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The quest to automatically paral-
lelize general-purpose programs is a long-
standing problem in the microarchitecture
community. Solving this problem is critical to
continued architectural improvements in
microprocessor performance, as instruction-
level parallelism with a single thread of control
approaches its performance limits. We’ve
developed a solution that relies on four key
technologies: chip multiprocessors, thread-
level speculation, dynamic compilation, and
hardware-based profiling. We can combine
these technologies and manage them inside a
Java virtual machine (JVM). The resulting
system, the Java runtime parallelizing machine
(Jrpm), can parallelize a wide range of inte-
ger, multimedia, and floating-point Java
benchmarks with excellent performance.

Jrpm is a complete system for parallelizing
sequential programs automatically for thread-
level parallelism. This dynamic parallelization
system overcomes the limitations of conven-
tional parallelizing compiler and multi-
processor technology.

The parallelization problem
In wide-issue superscalar and very-long-

instruction-word processors, instruction-level
parallelism faces diminishing returns (from
one to 10s of instructions). Processor archi-
tects are exploring coarser granularities, such
as fine-grained thread-level parallelism (from
10 to thousands of instructions) to speed up
sequential-program execution. Multiproces-
sor architectures and parallelizing compilers
have both been around for some time now,
but neither is effective at exploiting thread-
level parallelism automatically.

Traditional small-scale multiprocessors (from
two to 16 processors) have effectively exploit-
ed very coarse-grained parallelism (greater than
tens of thousands of instructions). Unfortu-
nately, current multiprocessor architectures
must communicate dependencies throughout
the multiple layers of memory hierarchy. This
generates interprocessor communication laten-
cies greater than hundreds of CPU cycles that
completely eliminate potential speedups from
finer-grained parallel tasks.
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Traditional multiprocessors must also han-
dle synchronization overheads for mutual
exclusion and event synchronization. Con-
servative synchronization preserves program
correctness, but too much synchronization
can greatly degrade multiprocessor perfor-
mance. This can be a serious problem for
automatic program parallelization using par-
allelizing compilers.

Traditional parallelizing compilers use array
data-dependence analysis.1 Data dependence
analysis determines dependence relationships
for pairs of array references in a program. A
compiler can use these results to reorder the
program to exploit coarse-grained parallelism
on a multiprocessor while correctly generat-
ing the same results as the original program.
Such compilers have successfully parallelized
Fortran-like numerical applications (which
have considerable regular, well-structured par-
allelism) on traditional multiprocessors.

Unfortunately, data dependence analysis is
often complex and expensive. Furthermore,
general integer programs have characteristics
such as complex control flow, irregularly struc-
tured loops, and significant pointer use that
make them unsuitable for automatic compil-
er parallelization. These characteristics ulti-
mately cause dependence analysis to return
imprecise dependency information for refer-
ence pairs, forcing the insertion of conserva-
tive, performance-degrading synchronization
into the generated code to safely handle
potential dependencies.

Jrpm approach
Jrpm is a dynamic parallelization system

that overcomes the difficulties of applying cur-
rent technologies and approaches for the auto-
matic parallelization of general programs.
Jrpm parallelizes programs with almost no
input from the user or programmer. A custom
runtime system with special hardware support
analyzes dynamic execution for parallelism
and correctly handles dynamic dependencies.
Figure 1 shows the system’s key components:

• Chip multiprocessor. Jrpm is based on the
Hydra chip multiprocessor (http://www-
hydra.stanford.edu).2 Decreasing feature
size and increasing transistor counts
make chip multiprocessors possible.3-6

Chip multiprocessors combine several

processors onto one die with a tightly
coupled memory interface. In this con-
figuration, interprocessor sharing and
communication costs are low, making
fine-grained thread-level parallelism
plausible.

• Thread-level speculation. Hydra supports
TLS,2,7-9 which allows arbitrary division
of a sequential program into threads for
parallel execution while still ensuring that
memory accesses between threads main-
tain the original sequential program
order. Thus, TLS enables aggressive par-
allelization relative to traditional multi-
processors.

• Hardware profiler. Static parallelizing
compilers have insufficient information
to analyze dynamic dependencies effec-
tively. Dynamic analysis to find paral-
lelism complements a TLS processor’s
ability to parallelize optimistically and to
use hardware to guarantee correctness.
TEST (Tracer for Extracting Speculative
Threads) support analyzes sequential-
program execution in real-time to find
the best regions to parallelize with mini-
mum hardware support.10

• Virtual machine. Virtual machines such
as Sun’s JVM and Microsoft’s .NET VM
have become commercially popular for
supporting platform-independent appli-
cations. In our system, the JVM acts as
an abstraction layer that hides the
dynamic analysis framework and thread-
level speculation from the program, let-
ting us seamlessly support a new
execution model without modifying the
source binaries.

Following Figure 1, the compiler derives a
control flow graph (CFG) from program byte-
codes and analyzes it to identify potential
thread decompositions.11 A single Hydra
processor executes, as a sequential program, a
program that has been dynamically compiled
with instructions annotating local variables
and possible thread decompositions. Trace
hardware collects statistics in real time for the
prospective decompositions. Once this hard-
ware has collected sufficient data, the dynam-
ic compiler recompiles into speculative
threads those regions predicted to have the
largest speedup and most coverage.
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Although the primary goal of our dynam-
ic parallelization system is to automatically
speed up program execution, the system also
benefits from additional properties that are
attractive to both programmers and system
designers:

• Reduced programmer effort. Manually
identifying fine-grained parallel decom-
positions can be time-consuming, espe-
cially for programs without obvious
critical sections. Because Jrpm automat-
ically selects and guarantees the correct
behavior of executing parallel threads,
programmers can focus on performance
debugging instead of the usual complex-
ities of parallel programming.

• Portability. Jrpm works with unmodified
sequential-program bytecodes. Because
the system doesn’t modify the binaries
explicitly for TLS, the code retains its
platform independence.

• Retargetability. Because parallel decom-
positions are not explicitly coded, Jrpm
can dynamically adapt decompositions at

runtime for future chip multiprocessors
with more processors, larger speculative
buffers, or different cache configurations. 

• Simplified analysis. Compared to tradi-
tional parallelizing compilers, the Jrpm
system relies on more hardware for TLS
and profiling support, but reduces the
complexity of the analysis required to
extract exposed thread-level parallelism
from both floating-point and difficult-
to-analyze integer applications.

Chip multiprocessor with TLS support
Hydra,2 shown in Figure 2, is a chip multi-

processor consisting of four single-issue,
pipelined MIPS processors, each with private
L1 data and instruction caches. High-speed,
low-latency read and write buses make thread-
level parallelism practical, even with substan-
tial interprocessor sharing. An integrated,
on-chip, shared L2 cache minimizes cache
misses when processors work on shared data.

TLS allows the division of a sequential pro-
gram into threads for parallel execution.
Although speculative threads can include
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loops, method call returns, or general regions,2

most research has focused on decompositions
based on loops. As Figure 3 (next page) shows,
a speculative thread loop (STL) is a loop
decomposed into threads, with one loop iter-
ation assigned to each thread. Data specula-
tion hardware ensures that the threads
maintain the original sequential program’s
memory ordering.

The STL model designates the CPU execut-
ing the logically earliest thread as the nonspec-
ulative head CPU. The model assigns logically
later iterations, in order, to the other CPUs for
speculative execution. Once the head CPU
completes its iteration, it commits its state and
starts speculatively executing the next unas-
signed iterations; the CPU executing the logi-
cally next iteration then becomes the head CPU.

Speculative-thread support in Hydra con-
sists of

• a coprocessor (CP) in each CPU with
extra registers, logic, and instruction sup-
port to control thread speculation;

• extra speculative tag bits added to the
processor L1 data caches to detect
interthread data dependency violations;
and

• store buffers attached to the secondary
cache to hold speculative data until a
speculative thread can either safely com-

mit them to the secondary cache or dis-
card them.2

A running application controls TLS through
instruction-set-architecture extensions and
special stores issued onto the write bus. For a
loop that has been transformed into specula-
tive threads (as in Figure 3), overheads occur
at the start and end of speculation, at the end
of every iteration, and on dynamic read-after-
write (RAW) violations.

Tracer for extracting speculative threads
TLS simplifies many automatic paralleliza-

tion challenges, but we had to consider cer-
tain constraints when selecting regions for this
execution model. With the Hydra chip mul-
tiprocessor, the major constraints are as
follows:

• True interthread data dependencies, or
read-after-write hazards, always limit
speedup from parallel execution of spec-
ulative threads.

• Speculative read and write states buffered
by the hardware cannot be discarded dur-
ing speculative execution and must fit
into the on-chip hardware structures.
Attempts to drop an L1 cache line with
speculative state or to write to a full store
buffer will force a speculatively executing
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thread to stall until the thread becomes
the nonspeculative head thread and safe
execution of a load or store is possible.

• Only one thread decomposition (for
example, one loop in a loop nest) can be
active at a time.

• Compiled speculative thread code intro-
duces sequential overheads from specula-
tive-thread-management routines and
forced communication of interthread-
dependent local variables, limiting
speedups under TLS for very small threads
(say, with less than 10 instructions).2,9

These constraints impose conflicting
requirements for selecting thread decomposi-
tions. Speculating on small loops limits par-
allel coverage and suffers from higher
speculative-thread overheads relative to the
work performed. Speculating on large loops
increases the probability of speculation buffer
overflows and could incur higher relative
dependency-violation penalties.

Dynamic analysis to identify STLs comple-
ments a TLS processor’s ability to parallelize
optimistically and to use hardware to guaran-
tee correctness. The primary goal here, unlike
with traditional parallelizing-compiler analy-
sis, is to identify where parallelism usually exists

rather than where it is guaranteed to exist. Pro-
filing can provide accurate statistics on dynam-
ic dependency behavior, thread size, and buffer
requirements for most types of programs.

Analysis overview
The compiler examines a method’s CFG to

identify all natural loops that could be a
potential STL.11 Two types of trace analyses
characterize an STL’s potential: load depen-
dency and speculative-state overflow.

By examining executing loads and stores,
load dependency analysis looks for interthread
dependencies for an STL. TEST records the
time stamp when a memory or local-variable
store occurs; on subsequent loads to the same
address, TEST retrieves this time stamp. By
comparing this value with the thread-start
time stamp, it is possible to detect the fre-
quency of interthread dependency arcs and
identify critical arcs. (A critical arc is the short-
est dependency arc that limits parallelism
between a given pair of threads.)

Speculative-state-overflow analysis checks
that the speculative state generated by an iter-
ation of an STL will fit within the limits of
the L1 caches and store buffers. TEST main-
tains a history of cache lines accessed by loads
and stores. Later, we can determine if subse-
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quent accesses to the same cache line will
require allocating a new buffer state to the cur-
rent speculative thread. By maintaining coun-
ters tracing these requirements, we can
estimate how frequent a given STL will over-
flow its speculative buffer limits.

Once TEST has collected enough profiling
data (for example, at least thousands of itera-
tions of an STL under analysis), it computes
the estimated speedup for an STL from the
dependency arc frequencies, thread sizes, crit-
ical arc lengths, overflow frequencies, and
speculative overheads. Using statistics from
the two analyses and the computed speedup,
Jrpm considers for recompilation into specu-
lative threads only those loops that have aver-
age iterations per entry far greater than 1,
speculative buffer overflow frequency far less
than 1, predicted speedup greater than 1.2,
and coverage greater than 0.5 percent during
sequential execution. It is often possible to
choose multiple decompositions in a loop
nest. In this case, Jrpm selects the best STL
by comparing the estimated execution time
for the different STL decompositions.

Hardware-software support for TEST
The hardware we designed to minimize

profiling overheads and improve accuracy ana-
lyzes a sequentially executing program and
works when speculation is disabled.

Annotation instructions that the dynamic
compiler inserts into native code mark impor-
tant events relevant to trace analyses. Anno-
tations mark a potential STL’s entry, exit, and
iteration end. TEST uses explicit annotations
to track local variables in the same calling con-
text as a potential STL that could cause depen-
dencies. This simplifies the tracking of these
variables in optimized compiled code. A
processor automatically communicates mem-
ory load and store events to the tracing hard-
ware when tracing is enabled. At the end of
an STL (for example, an exit from a loop),
special routines read the collected statistics
from TEST for use by the runtime system.

The annotation instructions communicate
events to the comparator banks. The com-
parator banks carry out the bulk of the depen-
dency and overflow trace analyses. One
comparator bank tracks the progress for a given
STL. Each bank, primarily comprising com-
parators and counters, analyzes and collects sta-

tistics on incoming loads and stores. An array
of comparator banks allows the tracing of mul-
tiple potential STLs that execute concurrent-
ly, as in nested loops. Our calculations suggest
that an implementation of the TEST hardware
with eight comparator banks would add less
than 1 percent to the transistor count of the
Hydra chip multiprocessor with TLS support.

The speculative store buffers, which are idle
during sequential nonspeculative execution,
hold a history of previous time stamp events
during profiling. The buffers retrieve an
address’ time stamp on an annotating mem-
ory or local variable instruction for use in the
comparator banks. The store buffers, orga-
nized as first-in, first-out (FIFO) buffers dur-
ing tracing, effectively hold a limited history
of memory and local-variable accesses.

Compiling selected regions into 
speculative threads

Jrpm’s Java runtime system is based on the
open-source Kaffe virtual machine
(http://kaffe.org), but we used our own just-
in-time compiler, microJIT, and a garbage col-
lector to make up for the original virtual
machine’s performance limitations. We aug-
mented the microJIT compiler to generate
speculative thread code. The dynamic compil-
er inserts speculative-thread-control routines
into the STLs chosen by TEST analysis. In
addition to the fixed speculative-handler over-
heads, additional overheads are possible in cer-
tain circumstances. The master processor must
communicate STL initialization values to the
slave processors by saving them to the runtime
stack. Certain optimizations must insert
cleanup code at the entry and exit of STLs. Fur-
thermore, the compiler must force local vari-
ables that could cause interthread (loop-carried)
dependencies in an STL to communicate
through loads and stores in a runtime stack
shared between all speculative processors.

When possible, Jrpm’s dynamic compiler
automatically applies optimizations to
improve speculative performance for selected
STLs. Table 1 summarizes these compiler
optimizations.

Parallelizing real programs using Jrpm
Table 2 summarizes the characteristics of

the STLs automatically chosen from TEST
analysis. Overall, we found significant diver-
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sity in the coverage of selected STLs. Although
many programs have critical sections, Assign-
ment, NeuralNet, euler, and mp3 have many
STLs that contribute equally to total execu-
tion time. Several programs have more select-
ed STLs than those shown in the table, but
the omitted decompositions do not have any
significant coverage. The mp3, db, jess, and
DeltaBlue benchmarks have significant sec-
tions of serial execution that are not covered
by any potential STLs, limiting the total
speedup for these applications.

These benchmarks come from the
jBYTEmark (http://www.byte.com), SPEC-
jvm98 (http://www.specbench.org/jvm98/),
and Java Grande (http://www.epcc.ed.ac.
uk/javagrande/) suites, as well as real applica-
tions found on the Internet.

TLS can simplify program parallelization,
but not all programs can benefit from it. Some
integer benchmarks evaluated using TEST
show no potential for speedup using specula-
tion. Programs with system calls in critical code
do not speed up on Jrpm, because our imple-
mentation of TLS cannot handle system calls
speculatively. Several other integer programs
contain only loops that consistently overflowed
the speculative state, executed too few itera-
tions for speculation, or contained an unopti-
mizable serializing dependency.

The larger programs contain so many loops
that manual identification of STLs would have
been too time-consuming. A visual analysis of
the source code revealed that a traditional par-
allelizing compiler could analyze less than half
the benchmarks. 

Performance results
We ran each benchmark as a sequential

annotated program on Jrpm with the TEST
profiling system enabled. The dynamic com-
piler then recompiled the benchmark and exe-
cuted it using speculative threads with the
STLs selected by TEST. Figure 5 shows slow-
down during profiling, the predicted TLS exe-
cution time from TEST analysis, and actual
TLS performance. Figure 6 compares total
program speedup (adding compilation,
garbage collection, profiling, and recompila-
tion overheads) normalized with respect to
normal serial execution (including compila-
tion and garbage collection overheads) for a
given benchmark run.

During profiling, most benchmarks experi-
ence no more than a 10 percent slowdown, and
only two applications have slowdowns approach-
ing 25 percent, as Figure 5 shows. These slow-
downs are reasonable, especially considering the
relatively short period of time that most pro-
grams must spend on profiling to select an STL.
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Table 1. Summary of low-level TLS compiler optimizations.

Optimization Function Benefit Cost
Loop-invariant register Register allocates Eliminates redundant Load of value into the

allocation memory load that always memory load per iteration register at init and restart
returns the same value

Noncommunicating loop Locally computes loop Eliminates frequent RAW Computation of inductor 
inductor inductor value for a thread violations for loop inductors value at init and restart

incremented at end of iteration
Resetable loop inductor Locally computes loop Eliminates frequent RAW Computation of loop

inductor-like value for violations for loop inductor-like value at  
a thread inductor-like values init and restart

Reduction Computes associative Eliminates dependencies for Merge locally computed values 
operations locally associative operations for final reduction value at 

exit
Synchronizing lock Protects loop-carried Eliminates RAW violations Wait and signal overhead 

dependencies from from frequent of the lock for every 
spurious RAW violations dependencies thread

Multilevel decompositions Switches selected STLs Improves load balancing for Init and exit overhead for 
between an outer and irregularly structured switching between 
inner loop in a nested loop nested loops STL decompositions



Simulations of this system show that our
approach has significant potential for auto-
matically exploiting thread-level parallelism.
From our wide set of Java benchmarks, we can
exploit thread-parallelism in integer, floating-
point, and multimedia benchmarks. The best
speedups, approaching 4×, occur with the
floating-point applications. The speedups
achieved on multimedia and integer programs
are also significant, between 1.5× and 3×, but
vary widely and are generally less than those
achieved for floating-point applications.

Overall, TLS execution characteristics such
as average thread size and number of threads
per loop entry (see Table 2) vary widely from
program to program. Despite this, the aver-
age thread size for most benchmarks is at least
100 cycles. We conducted our experiments
using single-issue MIPS cores. The average
thread size appears large enough to suggest
that programs could benefit further from
superscalar cores that exploit instruction-level
parallelism relatively independent of the
coarse-grained parallelism that TLS targets.

The overheads for profiling and dynamic
recompilation are small, even for the short-
er-running benchmarks. Contributing fac-
tors include the low-overhead profiling
system, the limited profiling information
required to make reliable STL choices, and
the small amount of code that must be
recompiled to transform a loop. In our
benchmarks, selected STLs vary little with
the amount of profiling information collect-
ed, once TEST collects enough data to over-
come local variations in RAW violations,
buffer overflows, and thread sizes. The rea-
son for this stability is that most selected
STLs are invariant to the input data set. For
benchmarks with STLs sensitive to the input
data set, the input data sets remain stable for
the duration of the benchmark. In real-world
cases, in which the input data sets can change
during runtime, Jrpm could trigger reprofil-
ing and recompilation when a selected STL
sensitive to the input data set consistently
experiences unexpected behavior.

We also measured the effect of optimizations
and improvements that impact all STLs. We
found that the reduction in overheads improves
speculative performance more than 5 percent
on 10 applications. Loop-invariant register allo-
cation improves performance only 2 percent to

4 percent for five applications. In addition,
without the noncommunicating loop induc-
tor, performance generally suffers far too much
to make meaningful comparisons. 

We had to resolve several correctness or per-
formance bottleneck issues in interfacing the
SVM and the Hydra CMP with TLS support.
These modifications have a more significant
effect on benchmark performance than spe-
cialized compiler optimizations. Parallelizing
memory allocator access and removing syn-
chronized object locks during speculation sig-
nificantly affects performance on six integer
benchmarks. In general, the opportunities to
apply specialized compiler optimizations are
limited to specific STLs in integer programs,
but the cumulative impact of the optimiza-
tions is significant. 
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Table 2. Description and characteristics of integer benchmarks

evaluated on the Jrpm system.

Loop No. of 

Benchmark Description count selected loops

Assignment Resource allocation 32 11

BitOps Bit array operations 4 2

compress Compression 28 4

db Database 37 6

deltaBlue Constraint solver 22 5

EmFloatPnt Floating-point emulation 7 1

Huffman Compression 14 6

IDEA Encryption 2 1

jess Expert system 134 4

JLex Lexical analyzer generator 128 7

MipsSimulator CPU simulator 19 2

monteCarlo Monte Carlo simulation 15 5

NumHeapSort Heap sort 5 2

raytrace Ray tracer 14 1

euler Fluid dynamics 32 13

fft Fast Fourier transform 5 2

FourierTest Fourier coefficients 2 1

LuFactor LU factorization 13 7

moldyn Molecular dynamics 8 1

NeuralNet Neural net 19 8

shallow Shallow water simulation 11 3

decJpeg Image decoder 61 21

encJpeg Image compression 62 9

h263dec Video decoder 54 3

mpegVideo Video decoder 69 9

mp3 Mp3 decoder 98 17

* Average loop height is the number of nested loops between a selected loop and the

innermost loop.



Future work on Jrpm will focus on three
areas: dynamic reoptimization of running

applications, performance enhancements on
applications that currently perform below
expectations using TLS, and scaling of the sys-
tem to work on larger multiprocessor systems
(more than four CPUs). We are also looking
at running additional applications on Jrpm to
further demonstrate the system’s ability to
speed up a wide variety of programs. MICRO
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Figure 6. Total program speedup with compilation, garbage collection, profiling, and recompilation overheads using default
benchmark data sets.
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