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Abstract

As more transistors are integrated ontgéardies, single-chip multiprocessors integrated
with large amounts of cache memory will soon become a feasible alternative taythe lar
monolithic uniprocessors that dominate todayicroprocessor marketplace. Hydreecf

a promising way to build a small-scale MP-on-a-chip using a fairly simple design that still
maintains excellent performance on a wide variety of applicatibhs report examines

key parts of the Hydra design — the memory hierarchy, the on-chip buses, and the control
and arbitration mechanisms — and explains the rationale for some of the decisions made in
the course of finalizing the design of this memory system, with particular emphasis given to
applications that stress the memory system with numerous memory accésteshe
balance between complexity and performance that we obtain, we feel Hiygisaagbrom-

ising model for future MP-on-a-chip designs.
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1. Introduction ferent parts of memory are described in section 4. Control

. . . . mechanisms, including the resource and address arbiters, are
The Hydra microarchitecture is a research vehicle currently

being designed at Stanford in afoefto evaluate the concept described briefly in section 5. Finally, section 6 concludes.
of a multiprocessor on a chip as an alternative for future mi-

croprocessor development, whergianumbers of transistors 2. Simulation Methodology and Results

and RAM may be integrated on a single chife have previ- Hydra s currently being evaluated using a sophisticated, cycle-
ously demonstrated the value of this approach, in a generaecurate memory simulator written in C++ that is interfaced
ized processor [1]. This technical report provides a more d&vith the SimOS machine simulator [7]. SimOS allows us to
tailed view of the system we are currently designing. simulate four fully functional MIPS-11 ISA CPUs and a suite

Hydra is composed of four 2-way superscalar MIPS CPUs o%f I/O devices with enough realism to boot and execute the

a single chip, each similar to a small R10000 processor [ﬁzlx 5.3 operating system under our tested applicatiésa

with individual L1 instruction and data caches attachad. result, system calls and I/G in our benchmarks were simu-

single, unified L2 cache supports the individual L1 caches anlgteOI with exceptional realism. Hydra simulates the memory

provides a path for rapid and simple communication betweesr}/Stem using a group of interconnected state machine con-

the processorsThese two levels of the memory hierarchytm”ers to evaluate the memasyresponse to all memory ref-

and the bus interconnections between them are the focuseoanceS’ both instruction and data, supplied by Sinih&se

the Hydra design effort described here. However, the desigcr?ntrOIIerS communicate through shared models of the cen-

would be incomplete without a state-of-the-art-afip tral arbitration me_chanism_s and the caches in order to accu-
memory system. On one side of the chip, a 128-bit L3 C(,jmhrzéltely model the time required to complete all accesses.

bus attaches to an array of high-speed cache SRAMs, whiléis paper focuses on describing the Hydra hardware qualita-
on the other side Rambus channels directly connect matively, but some key numbers from two applications that we
memory to Hydra and a more conventional bus connects Hgvaluated are used throughout the text to illustrate the ratio-
drato I/O devices. Fig. 1 shows a diagram of the architectureale for key design features of Hydra. The numbers of inter-
while fig. 2 depicts a possible layout for the completed deest are plotted in figs. 3—6. Representative samples from the
sign. core loops of the swim and tomcatv SPEC95FP benchmarks,

This paper gives a brief overview of the microarchitecture an%arallellzed automatically using the SUIF compiler system [8],

attempts to describe some of the trads-tiat have been were executed on the simulator to get these redMtsle we

evaluated in the course of revising the design. Section 2 givggve examined several other applications from the SPEC suite,

these two have exhibited the most interesting memory system

a brief overview of the simulation environment we are usin% havior b H o i |
to evaluate Hydra, and presents a few of our most interestinge avior because they stress the memory system wg@ lar

results obtained through simulation. Section 3 presents a dﬁqmber§ of accesse_s. In contrast, the Hydra memory sgstem
o . , . ... cache hierarchy easily handles the small data sets of the other
scriptive overview of Hydra memory hierarchy, along with

a qualitative view of how the dédrent levels interactThe SPEC benchmarks. In the future, we may examine other ap-

communication buses used to transmit data between the dﬂ]_lcatlons with large data sets, such as databases.
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Figure 3: Resource occupancies in Hydra for several simu-Figure 4:The % increase in execution time seen as a result of
lated situations. (see section 3 for the L2/L3 cache discus- several architectural decisions, over “perfect” scenarios.
sion and section 4 for discussion of the buses) (see section 3 for the L2/L3 cache discussion and section 4

for discussion of the buses)
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L1 Cache L2 Cache L3 Cache Main Memory

Separate | & D . .
. . . Shared, on-chip Shared, off-chip .
Configuration SRAM cache pairs SRAM cache SRAM cache Off-chip DRAM
for each CPU
Capacity 16KB each 512K B 8MB 128 MB
. . . 128-hit synchronous | 32-bit Rambus
Bus Width (6;;8” connection to Eﬁ6\;vk)rliie:et)afsf us+ 64 | sraM (running at (running at the full
half the CPU speed) CPU speed)
Access Time 1 CPU cycle 5 CPU cycles 10 cycles to first word | at least 50 cycles
Associativity 4-way 4-way 2-way* N/A
Line Size 32 bytes 32 bytes 64 bytes 4 KB pages
Write Policy Wntethrough,'no erteback, allocate on Writeback writeback '(VI rtual
allocate on write writes memory paging)
Inclusion N/A Inclusion not enforced | Includes al datain L1 | Includes al cached
by L2 on L1 caches and/or L2 caches data

Table 1: A summary of the cache hierarchihe two entries marked with asterisks, L2 cache bus width and L3 cache associa-
tivity, were varied during the experiments documented in figures 2 afdhd experiment, comparing a single L2 port
against a pair of separate read and write ports, is also documented in the graphs but is not reflected in this table, since all othe
levels of memory are strictly single-ported.

3. The Memory Hierarchy fairly sophisticated arbitration logic between the L1 cache and
the processors. Such hardware would tend to have an impact

on the processa’clock speed and/or increase the number of
cycles required for each L1 cache access, which would nega-
3.1. The L1 Caches tively impact the load-use penalty seen by executing code and
The individual L1 instruction and data caches associated witbause more pipeline stallSthe combination of these three
each processor are designed to supply data to each processfiects makes the design of a shared-L1 cache a problematic
in a single cycle while supporting the very high memory bandsolution, as shown in [4].

width needed to sustain processor performance. Since Sqﬁ contrast, Hydra independent L1 caches allow each pro-

40% of instructions in a typical MIPS-Il ISA instruction stream cessor to have its own small and fast L1 cache that processes

are loads and stores, dynamically [3], a reasonahityesft a single access every cycle. Such caches can be easily opti-

2-way superscalarimplementation will have to deal with abou}nized to return data within a single cycle. Our measurements

two data memory accesses from each processor every thrﬁgve shown that in typical applications significantly more than

cycles, in addition to a constant stream of instruction fetche%O% of loads hit in these L1 caches and do not need to progress

Multiplied by four processors, the first level data caches CON: iher down the memory hierarchhe only concession that

S|der_ed together must be able to support a throughput of Fust be made to allow multiprocessing is that each data cache
proximately three accesses per cycle, on average.

The Hydra memory system uses a flawel arrangement, sum-
marized in Table 1. Each level is explored further below.

must snoop the write bus and invalidate any lines to which
A single, shared cache would have to be extensivelyther processors write, in order to maintain cache coherence.
multiported and/or multibanked in order to sustain this bandThis can be easily performed using a duplicate set of L1 tags
width. Additionally, such a shared cache would have to bededicated to handling snoops on the write bus, and then only
larger than the four separate data caches we propose, sincéniterrupting the rest of the L1 cache when an invalidation is
would have to hold the active working sets of all four procesactually necessary.

sors. Third, a shared cache would require a crossbar and/or
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3.2. The L2 Cache Fig. 3 shows the occupancies of the cache ports when the L2

The lage, on-chip L2 cache serves several functions. First, gache is single-ported or dual-ported, with dedicated read and
acts as a larger on-chip cache to back up the small L1 cach#gte ports.The occupancies from the 2-port case clearly show
with a nearby memory an order of magnitude larger, but fivéhat most of the bandwidth in the L2 cache is used to absorb
or more cycles slower. In practice, the L2’s access latency ¥¥ites fromthe L1, while only a small percentage of the cycles
so short that it has little fefct on the overall execution time. aré used to handle read accesses (L1 cache refills). Compar-
With most applications, the L1 caches have already exploitéld caches of equal capacifig. 4 shows that the performance
much of the locality present in memory accesses, so unlelgss incurred by using a single-ported L2 cache is at most about
the applicatiors entire data set fits into the L2 the local cache*% over an infinitely-ported cache — or 2% over a dual-ported
hit rate in the L2 tends to be poor — usually well under 50%5ache — legely due to the fact that the small number of read
and sometimes under 20%. More importarttig L2 cache accesses does not disturb the stream of writes into the L2 much.
serves as a sort of write tierf between the processors and thel reality a single-ported design could have géarcapacity
outside world. Since the L1 caches are write-through, the writd @ given area, since it could be made using simpiere
bandwidth generated by the four processors would easily ovefompact SRAM cells. Due to the negligible performance loss,
whelm of-chip buses. Using numbers from [3], a typical pro-We have chosen a single-ported implementation for Hydra.
gram can be expected to write about once every ten instrug—_s_ The L3 Cache

tions, or about once every five cycles from a 2-way processqr, of-chip L3 cache dérs a cache with another order of

executing at its peak rachEh four processprs executing a_t magnitude lager capacity than the L2, but which can only be
peak throughput, about 80% of cycles will produce a Wmeaccessed through a relatively narrd®8-bit port that oper

from one of the processors, on aver_age. Our S|mulat|o_nas[es at half of the processor spedd a result, it provides
showed that after CPU stalls were considered, there were writes

_ . i _ ) good hit rates with a reasonably short access time of about 15
in 40-60% of cycles, typlc_al,l)supportmg these es_hmaté’skm cycles to the first word, minimum (including L1 and L2 miss
L2 cache captures all writes and collects them into dirty cacr}e

] _ ime), but with bandwidth restrictions that are severe com-
lines before passing them down to the lower levels of memor .

o ) ) i o B’ared to the on-chip caches.
via its writeback data handling protocol. By doing this, it
reduces the 6chip bandwidth caused by writes to a manage-The design of this level of the memory hierarchy was fairly
able level. The L2 also acts as a communication mediunstraightforward, but we did examine the consequences of hav-
through which the four processors can communicate usirf§d the L3 cache be both direct-mapped and 2-way set asso-
shared-memory mechanisms. Since it always contains the mé&égtive. Since we do not have on-chip cache tags, the 2-way

up-to-date state for any line, it can supply shared data immaersion of the cache speculatively starts fetching from both
diately to any processors that need it. cache lines contained in a set until the correct way is known.

o ) The former consumes less bandwidth, since erroneous data
The communication mechanism through the L2 allows the Li'[rom the “wrong” way of the set will not be speculatively

caches to be simplified — they only have to support theextef .. a5 shown in fig. 3, while the lattefeo$ higher hit

nal invalidations mentioned in the previous section, instead (?Btes. The 2-way L3 exhibits extremely high occupancies on

full MESI protocols and L1 cache-to-L1 cache data transfersy, o | 3 e rface, butits increased hit rate and flexibility in the
since they cannot hold private dat/ith this simple proto-

_ o ST ~ face of cache conflicts make it better choice, in general. Fig.
col, interprocessor communication speed is still quick — jus

o ) ) t4 shows that the two applications slowed down about 4% in
the round trip time to write to the L2 and then read back into Both cases due to contention at the interface with the 2-way

different processos’L1 cache — about 10 cycles, minimum. L o -
associative cache. Howeyswim incurred a significant pen-

Another advantage that this desigriees on a low level is alty from a cache conflict that could not be averted in the di-

that the L1 and L2 caches may be individually tailored to the'Fect mapped cache but was easily avoided in the set-associa-

distinct purposes — the L1 caches to handling high-speedy 0 * since the latency of main memory is an order of

hfgh-bandvx_/ldt_h _accesses |r_1 asingle clock cycle, andthe L2 F]Qnagnitude longer than the L3 latenaysmall number of these
high capacityfilling up all die area not required by the pro-

) ) conflicts can cause a significant slowdown.
cessors with as much cache memory as possible.




3.4. Main Memory Another interesting variation is a design with né-afip

Even with a lage L3 cache, some applications haveydar SRAM L3 cache at all.This arrangement is beneficial for
enough working sets to miss in all of the caches frequentlyeveral reasons. First, high-speed cache SRAM chips are ex-
severely taxing the main memory subsystem. In order to ke@ﬁnsive, so eliminating them would reduce the system cost
up with the processors on swim and tomge have found ~dramatically Second, approximately half of the I/Os on Hy-
that the memory system would have to be able to deliver a 3ga are devoted to the L3 cache interfadéthout this cache,

bit word to the chip on every processor cycle, on average & much cheaper package and simpler motherboard could be
half the bandwidth of the L3 cachwlith processor speeds of Used to hold each Hydra paifthird, design of the Hydra and
tomorrow this will take multiple Rambus-style memory in- the system would be simpler and therefore cheaper without
terfaces directly attached to the processor to supply the necéde L3, since the design of the L3 interface, from both electri-
sary bandwidth while keeping the number of pins connecting@l and control perspectives, is a nontrivial task. FinaBy

Hydra to the DRAM reasonable. time passes it is becoming possible to integragefarmounts
of cache memory on the processor diEhus, the on-chip

3.5. Other Alternatives SRAM L2 may eventually become ¢grenough to have a good
While the current Hydra design addresses a fairly high-en@ca hit rate on read accesses, and therefore perform the job
and expensive CPU design, with many high-speed SRAM ang} the 3 cache in the current desighnother possibility is
DRAM chips directly attached to the Hydra chip, alternativgnat the SRAM L2 cache could be replaced with on-chip
designs are possible in systems with different constraints. pram, a lager but slower on-chip memory technolpgy

A small variation could be made by pulling the L3 cache taggrder to fully replace the L3 cache with an on-chip alternative
on-chip, like those in the PowerPC 750 [9]. In the currenff Similar size and speed. Larger on-chip SRAM caches and
design, the L2 cache acts primarily as a buffer for writes an@n-chip DRAM are explored in [6].
interprocessor communication, due to thesLPw local hit : :

P 4. Communication Buses
rate on read accesses. As a result, most data not found in the . . ) o
L1 has to be recovered from the L3 cache. Trading some L-Qqe read/replace (or "read”) and write-through (or “write”)
cache for L3 tags, in order to improve the performance of thI%uses, depicted in fig. 1, are the principal paths of communi-

L3 cache, might therefore be a reasonable trafleTofe L2 cation across the Hydra chip. Both buses are controlled in a
hit rate will decrease, but that should ndeefoverall perfor pipelined mannewith bus arbitration occurring at least a cycle

mance much.This would help improve L3 performance in before bus use, to keep throughput at one access per cycle

two ways. First, the L3 cache could be made highly associg-aCh bus. Such throughput is necessary to avoid bus satura-

tive. While it is not practical to check more than one or twotlon in the current implementation of Hydra on applications

off-chip tags at once, many on-chip tags can be checked |Sr%jCh as tomeatv and swim.

parallel. The increased associativity would tend to reduce L3 .1. The Read Bus

miss rates and thereby increase performance. Second, the3 read/replace bus is thegast and most important data
tags could be checked in parallel with each L2 accass.  hjghway across the Hydra chip. It is 256 bits wide, matching
cesses that miss in the L3 entirely could be routed directly §@e | 1 and L2 cache line size, in order to allow entire lines to
main memorynot wasting any of the L3 cache pstimited  pe transmitted across the chip at once. It is used to move
bandwidth on useless accessatso, even a highly associa- ¢ache lines around among the on-chip caches andfibkipf

tive L3 would only exhibit bandwidth requirements similar tojnterfaces, since all connect to MVhile only one interface

the tested direct-mapped version. Instead of wasting bangfay broadcast data at a time, many may listen to data broad-
width speculatively reading multiple lines from a set of assogast across the read bus — for example, data brought in from
ciative cache lines, the on-chip tags would simply select thﬁ]emory can be accepted by the L1 cache, L2 cache, and L3

correct line before the BEthip access was startedhe re-  cache interface on the same cycle, from a single broadcast.

duced contention at the L3 cache port would both improve o )
- Since it is not a crosshahe read bus must be arbitrated for
performance, as our tomcatv results in fig. 4 shevd save

: . before each data broadcast, as described in section 5. How-
power by reducing the number of accessesftolop memory o
ever while it performs many tasks, we have found that the bus




is typically occupied less than 50% of the time, as shown iever. First, it would be possible to have multiple write buses
fig. 3, even with our most memory-intensive applicationson a single Hydra chipAs long as they did not carry data
Contention for this particular resource is thus not a problenbeing written to the same address at once, the multiple write
As fig. 4 indicates, contention fdwoth the read bus and the buses would appear just like a single, faster write bus to the
write bus slows performance by only a few percent over &PUs. This scheme would require that extra ports be sup-
perfect crossbar, even in the worst cases. plied to the L1 tags, to allow multiple snoops and invalida-
tions per cycle, and to the L2 cache, to allow multiple data

4.2. Write Bus _ . e

) _ words to be written every cycl&his latter modification would
While the read bus '_S a ge.neral-purp_ose data b_us’ the W”[t)?obably significantly enlge the L2 cache, and thus could
bus has one specific job — it takes write-througHitrdifom

make this solution impracticah second scheme would be to

the CPUs and sends them into the L2 cache. Since it onIl?/ave a single, line-wide write bus. Since many bursts of writes

carries data from one store at a time, it only needs to be 64 bitsI s : . .
i ) _ ~ ~will fall within a cache line or two, mging writes that fall on
wide, at most — the width of the widest MIPS-II store in-

single cache lines together in the CPU writefénsf would

struction. This dedicated bus is necessary because our I‘:gﬂow greater store throughput on these critical sections of code.

caches are writethrough and all stores from the CPUs must tll?lil’d, the write bus could be discarded altogether and a more

broadcast due t(_) our s_|mple coherence scheme. Smcg theé‘olnventional MESI coherence protocol between the L1 caches
caches do not filter this bandwidth, bus fiatan be quite

could be adoptedThis would eliminate the write bus alto-

e . . 0 . N
high — sometimes exceeding 60% full, as is shown in fig. 3gether and would make the system look like a conventional

even though each access only reserves the bus for a Smgl‘?ared-bus multiprocessor centered around the readAsus.
cycle — and the bus can be saturated at times of high write

such systems have already been examined [5], and have sig-
traffic. Reasonably deep write lbeifs are needed between

nificant control overhead, we chose to look at a more simple

the processors and the write bus to collect and feed stores O?atr?d novel architecture. Finally, in the long-term future, mul-

the bus obne by (f)ne wh_ﬂe not _stallmg thehpro;essqr; is th%Ie Hydra-like architectures could be connected hierarchi-
execute bursts of store instructions. Mleg thisbuswiththe .\ 1 - ingle chip, to achieve scalability while still includ-

read bus would typically result in a completely saturated bu%g high-performance clusters of processors. Such an archi-

and significantly reduced performance, as figs. 3 and 4 indl-ecture is beyond the scope of this technical report.
cate.

As well as giving writes a clear path to the L2 cache, the writg' Control Mechanisms

bus also serves as a crucial mechanism for synchronizing &€ buses and caches in Hydra are controlled by a group of
processors\Writes are serialized as they pass through the writg'emory control pipelines, each devoted to a particular CPU
bus, so multiple writes to the same address will update tH& interface. To prevent the pipelines from attempting to use
permanent state of the machine in a consistent.oi@iece ~ fesources or addresses simultaneoaslgess to these two lim-

all state changes are broadcast in this one location, L1 cacii®d factors is controlled through the resource and address
coherence may be maintained by having the L1 caches snodfpiters.

on just this bus, and then invalidate their own contents whe@_l_ Memory Control Pipelines

they contain a line to which new data is being written. Sinc%ight of the ten dierent *
the write bus carries written data along with addresses th’fgined in the CPUs. Each of the CPU memory controllers in
need to be invalidated, it is fairly easy to use an update cac?

|8. 1 contains two independent pipelines, one for handling

protocol instead, should that be desired. We chose not to USE | accesses — both from instruction fetches and loads —

.an updatg pro_tocol since this generally results in many uselegrs]d one for handling writes from storeBhese pipelines are
interventions into other processors’ L1 caches. :

used for any access that requires the use of any level of memory
One critical issue that should be noted is that the write bus selow the L1 cacheswWhile a processor will make approxi-
not scalable to lgler numbers of processors, orto afaiay  mately two read accesses per cycle on typical code [3], most
MP made up of more complex, and therefore fagterces- read accesses are handled by one of the L1 cadles, a

sors. This problem is easily addressed in several ways, howsingle read pipeline is didient to process the occasional cache

memory control pipelines” are con-
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misses. On the other hand, due to the writethrough L1 cacl#owever our old arbiter was often letting young accesses,
policy, every write made by each processor must pass througjoing to the L2 cache, pass up older accesses trying to use the
the write pipeline. On average, typically a store will happer.3 cache or main memory — a problem often called “priority
only about every 5 cycles [3], even with the processor runnversion.” As a result, we improved the resource arbiter (see
ning at peak efficiency. Howevdsursts of stores do appear the next subsection), and managed to dramatically improve
frequently in real code. Hydra only includes one write pipefesults. Since the “perfect” baseline represented in fig. 5 could
line, but this is usually sufficient because the bursts of stordse obtained only with full crossbars instead of buses and with
may simply be bdéred without stalling the processoiWe  infinitely-ported caches, we feel that our results are quite good,
have found that the store feif and write pipeline combina- given our realistic resource limits. In a later experiment, we
tion can be saturated by store-intensive code, but generallgduced the degree of pipelining by eliminating the cycle-by-
other system resources such as the write bus or the L2 cadahele pipelining in some or all of the three main pipeline ac-
port are also approaching the saturation point at these timegss stagesThis allowed only a single access to be handled
so the pipeline is not much of a bottlenedierefore, short in each of these main stages at a time. The surprising results
of making a much more complex and expensive system, tlae shown in fig. 6. The more coarse pipelines were actually
single pair of control pipelines on each CPU appear to form slightly better than the full cycle-by-cycle ones, even though
reasonable design. they are much simpler and easier to bullte reason is simple

The read and write pipelines in each CPU are very similar along with the improved arbitethe coarser pipeline re-

Each consists of three main stages: the L2 cache access (wh?clhced the amount of priority inversion that occurred. Han-

is about 5 cycles long), the L3 cache access (about 15 cycledy,ng more than one access per main pipe stage, in contrast,

and the initiation of a main memory access (about 5-10 cyclestﬁ_'.rned outto be unnecessary — the coarser stages wire suf
Each access goes through each stage in succession until %eent.

required cache line is located in one of the levels of the memofhe remaining two pipelines are in the main memory and I/O
hierarchy Resource arbitrations are made at the start of ea¢hterfaces. These controllers process data returning from
section of the pipeline in order to ensure that the pipeline hasemory or 1/O requests, sending it to the appropriate caches
reserved needed resources before initiating an access to a cashehe Hydra chip as it arrive3.hey are much simpler cous-

or using a busThe only real diference between the two pipe- ins to the CPU controllers, since they basically just respond to
lines is that the write pipeline writes its data into the L2 fromall data arriving from dfchip in a programmed manndrike

the write bus at the end of every access, while the read pipihe other pipelines, they were gradually pipelined from simple
line forces the desired cache line out onto the read bus.  state machines. However, the limited bandwidth of the main
In the process of tuning Hydra, these pipelines were adjustenaemOry and l/O buses also imposed a limit on the degree of

: : . S pipelining that was necessaryhe main memory controller
extensively to improve performance. Initialthe pipelines o i T )
only needed to be divided into two main pipeline sections —

were not actually pipelines — instead, they were just state _ _

. . ._one for sending data to the L1/L2 and one for recording cache
machines, that could only process a single access at a time.” Y

. - lines into the L3 cache. Currentine 1/O controller is still
The performance of this system was surprisingly good. On - i i
applications other than swim and tomc¢é#te limited number cFJmpIeter unplpgllned, since that is enough to handle our
S|g1ulated I/O traffic.

of accesses that could be processed at once was never a prob-

lem. These simple controllers became a tremendous perfof_ 2. Resource Arbiter

mance drag with the more memory-intensive applicationsyne resource arbiter is responsible for allocating the hip’
however. We next evaluated the opposite alternative — CORey resources — the buses, caches, and sonferdut- for
trollers that could start processing a new access every CyCie next several cycles ahead. Many arbitration mechanisms
As shown in fig. 5, performance improved, but not as much gsandie requests on a cycle-by-cycle or resource-by-resource
we had hoped. In particujave found that switching to such pasis, put the Hydra arbiter processes entire “resource requests”
priority scheme. For best performance, a good heuristic isipeline over the course of the next 5-20 cycles. Each CPU
that the oldest accesses should get resources before newer ones.
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pipeline sends the arbiter a resource request before eachpty because they were never able to acquire resouildess.

the three main pipe stages, and then stalls until the arbiter telecond version of the arbiter solved this problem by handling
the pipeline it may continueThe memory and I/O pipelines each resource request only once, on the cycle it arrives at the
work similarly, but are designed to make several small resourcarbiter On that cycle, the arbiter scans ahead until it finds the
requests as words of data are brought into Hydra frdm ofearliest time that the request can be handkefter finding

chip. Since pipelines send out their resource requests at le#tsis time, the arbiter reserves the resources immediately and
a cycle before any of the critical resources are actually neededtifies the pipeline how many cycles it must waithile the

for processing, the resource arbiter causes no unnecessaimple L2 cache accesses are still usually delayed less than
delays when resources are free. Some of the resource requetsts,more complex L3 accesses by this arbitration mechanism,
especially those involving the L3 cache, may be for quite conthe arbiter can guarantee that the L3 accesses are able to get
plicated combinations of buses and caches derdiit cycles. the minimum delays that their resource requirements allow.
The arbiter |m_pos_es a fixed priority on the requests, depen%—ISI Address Arbiter

ing upon the pipeline and the request typkmemory and 1/

O pipeline requests always get first priarfllowed by main o )
téa_neously by dferent pipeline controllers in Hydra, problems

memory requests, L3 cache requests, and finally L2 cache r

quests Among the CPU pipeline request types, the read pipemay occur The first problem is that multiple copies of a single

. . S cache line may be generated within an associative set of lines.
lines generally have priority over the write pipelines. How-

ever each CPU may select to invert the priority of its read ang a pipeline controller misses in a cache, it will immediately

o : : ... attempt to recover the line from the next level of the cache
write pipelines intentionally on a cycle-by-cycle basis, glvmgh_ h ) it h ller is alread
its writes higher priorityin case its write bigr is nearly full. lerarchy Unfortunatelyif another controller is already pro-

We found this feature to be quite helpful with memory-inten-cessmg a miss to the same line, both will return with their

. o ; own copies. Along with wasting precious cache space on re-
sive applications that must frequently recover cache lines from ) ) i i
. . .dundant data, duplicate lines may cause functional errors if
the L3 cache or main memory in order to handle their ) _ i
writes are made to both copies, since eventually both copies

writethrough trafic, since even a few L2 cache misses on _ ) ]
of the cache line will be written back to lower levels of memory

writethroughs can allow a CPU fill up its write Buf Priori- H ) H i back fi b
ties among the diérent CPUs are changed round-robin, so so the writes to the copy written back first will be errone-

that no CPU may hog the arbitewe tried more complex ously overwritten.A similar problem can occur if one con-

inter-CPU priority schemes, also, but they did néeetiper- troII_er is wrftlng_ bacl_< a d|rt_y line to thg n_ext level of m_emory
N While the line is being written back, it is no longer listed in
formance significantly.

the tag directory of the cache that is discarding it. Hence,
As shown in fig. 5 and discussed in the previous subsectiogngther controller may miss in the cache and subsequently
the arbiter has gone through two main stages of developmefglch the old, stale version from the lower level of memory
in order to prevent accidental priority inversionBhe first  yhile the more recent version is still in the process of being
version of the arbiter checked all pending resource requesjgitten back. The cache will refill with the stale data, and the
from all pipelines on every cycle. If a request failed, it wasyritten-back modifications to the line will be permanently lost.
tried again on the next cycle. If a request succeeded, its rgraking these problems worse, each access may involve up to

source reservations for the next several cycles were recordgflyee diferent cache lines — the line requested, the L2 cache
and the requesting pipeline was allowed to continlieis  \yriteback, and the L3 cache writeback.

scheme had the unfortunate sidéeeif of giving the simple _ _
CI-jydra’s address arbiter solves these problems by simply for-

L2 cache accesses higher priority than the complex L3 ac-" ) :
. . bidding multiple accesses to the same address in the L2/L3/
cesses. Since these simpler requests demanded fewer re-

. . ) . main memory system until all previous accesses to that ad-
sources, it was easier for them to find all of their resources

. dress have completed. In order to protect all three cache lines
free on any given cycleThey would then reserve resources

for the next several cycles ahead, and frequently block pen _ )
. . . . dra address arbiter actually checks only the address bits that
ing L3 cache accesses further in the procé&sss resulted in

.are used for indexing intmoththe L2 and L3 — 8 bits in the

some references taking thousands of cycles to complete, sim-

If multiple accesses to the same address are processed simul-

Hlat an access may use with only a single arbitration, the Hy-
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current implementationThis works because a line and anykeep the on-chip caches coherentf-&ip memory is con-
writebacks it may generate will always be in the same asstrolled through two glueless ports to attached SRAM and
ciative set, so by protecting its sets in both the L2 and L3 wBeRAM chips. Arbitration of key resources and addresses is
automatically protect all three lines that might be active aaccomplished with two custom mechanisms that have been
once. The address arbiter “checks in” each access when liighly tuned.With this balance between complexity and-per
initially tries to access the L2 cache tags — always the firdfbrmance, we believe Hydrafefs a promising model for
step of any access. Most accesses continue on without prdbture MP-on-a-chip designs.

lems, but if an address collision is detected the L2 cache ac-

cess is aborted and the access is queued up behind all previgjgferences

accesses to that particular indeXo keep the mechanism [1]K. Olukotun, K. Chang, L. Hammond, B. Nayfeh, and K.
simple, no prioritizing is performed among the queued ac- Wilson, “The Case for a Single Chip Multiprocessgro-
cesses.When all previous accesses to that index have com- ceedings of the 7th Int. Conf. farchitectural Support for

pleted, the access is freed and it retries the aborted L2 cacheProgramming Languages and Operating Systems
ACCESS. (ASPLOS-VII) pp. 2-11, Cambridge, MA 1996.

o ) ) [2]K. Yeager “The MIPS R10000 superscalar microproces-
While this mechanism might appear to be rather heavy-hande sor,” IEEE Micro, vol. 16, No. 2, pp. 28-40, April 1996

and excesswe, in reality it has a negligible |mpac_t on perfor[S]D_ Patterson and J. Hennespmputer Architecture: A
mance, as fig. 5 demonstratékhere are three basic reasons

o ) o _ Quantitative Approach2nd Ed., Morgan Kaufmann Pub-
why it is not a problem. First, the mechanism is not invoked

o lishers, Inc., pp. 105-6, San Francisco 1996.
by reads that hit in the L1 cache, so the number of acceSﬁﬁ?B Nayfeh, L. Hammond, and K. Olukotun

“checking in” to the arbiter is reasonably small. Second, even

8-bit mghces dfer 256 diferent possmleya!ues. Since there Proceedings of the 23rd Int. Symposium on Computer Ar-
are typically nowhere near that many active references reserv- chitecture pp. 67-77, Philadelphia, PA 1996.

ing addresses at once in Hydra, odds of a random collision a[rﬁM Takahashi. HTakano. E. Kaneko. and S. Suzuki. “A

reasonably small. Finally, the mechamsm _aIIows accesses to Shared Bus Control Mechanism and a Cache Coherence
the same address to work together mofieieftly. When

multiple processors attempt to read the same cache line from
the L2 cache and miss, the address arbiter will allow only the
first pipeline controller to actually see and process the miss. CA 1996

The others.are stalled py the ad_dress arh@not using any 6]T. Yamauchi, L. Hammond, and K. Olukotun, Single-
resources in the meantime, until after the first controller reads Chip Multiprocessor Integrated with DRAM,” Stanford

University Technical Report No. CSL-TR-97-73August

“Evaluation of
DesignAlternatives for a Multiprocessor Microprocessor

Protocol for a High-performance On-chip Multiprocegsor
Proceedings of the 2nd Condace on High Performance
Computer Architecture (HPCA-2)p. 314-322, San Jose,

the line into the L2 cacheAny trailing processors then just
hit in the L2 cache, &ctively riding on the coattails of the

1997.
first access. [7]M. Rosenblum, S. Herrod, B/itchel, andA. Gupta., “The
6. Conclusions SimOS approach,lEEE Paralleland Distributed &ch-

nology, vol.4, no. 3, 1995.

[8]R. Wilson, R. French, GVilson, SAmarasinghe, Ander-
son, S. Tjiang, S.-W.iao, C.-W Tseng, M. Hall, M. Lam,
and J. Hennessy'The SUIF Compiler SystemA
Parallelizing an®ptimizing Research CompiléGtanford

As more transistors are integrated ontgéadies, single-chip
multiprocessors integrated with ¢gr amounts of cache
memory will soon become a feasible alternative to thgelar
monolithic uniprocessors that dominate todawpicroproces-
sor marketplace. Hydrafefs a promising way to build a ) _ i

L . . . . University Technical Report No. CSL-TR-94-620, May
small-scale MP-on-a-chip with a fairly simple design while
maintaining excellent performance on a wide variety of appli- 1994. o )

. ) - é%JL Gwennap, “Arthur Revitalizes PowerPC LindJlicro-

cations. Simple buses are used to connect several optimized,
single-ported caches togeth#vith the write bus based archi- processor Reparpp. 10-13, February 17, 1997.
tecture, no sophisticated coherence protocols are necessary to
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