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Abstract

As more transistors are integrated onto larger dies, single-chip multiprocessors integrated
with large amounts of cache memory will soon become a feasible alternative to the large,
monolithic uniprocessors that dominate today’s microprocessor marketplace.  Hydra offers
a promising way to build a small-scale MP-on-a-chip using a fairly simple design that still
maintains excellent performance on a wide variety of applications.  This report examines
key parts of the Hydra design — the memory hierarchy, the on-chip buses, and the control
and arbitration mechanisms — and explains the rationale for some of the decisions made in
the course of finalizing the design of this memory system, with particular emphasis given to
applications that stress the memory system with numerous memory accesses.  With the
balance between complexity and performance that we obtain, we feel Hydra offers a prom-
ising model for  future MP-on-a-chip designs.
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1. Introduction
The Hydra microarchitecture is a research vehicle currently

being designed at Stanford in an effort to evaluate the concept

of a multiprocessor on a chip as an alternative for future mi-

croprocessor development, when large numbers of transistors

and RAM may be integrated on a single chip.  We have previ-

ously demonstrated the value of this approach, in a general-

ized processor [1].  This technical report provides a more de-

tailed view of the system we are currently designing.

Hydra is composed of four 2-way superscalar MIPS CPUs on

a single chip, each similar to a small R10000 processor [2]

with individual L1 instruction and data caches attached.  A

single, unified L2 cache supports the individual L1 caches and

provides a path for rapid and simple communication between

the processors.  These two levels of the memory hierarchy

and the bus interconnections between them are the focus of

the Hydra design effort described here.  However, the design

would be incomplete without a state-of-the-art off-chip

memory system.  On one side of the chip, a 128-bit L3 cache

bus attaches to an array of high-speed cache SRAMs, while

on the other side Rambus channels directly connect main

memory to Hydra and a more conventional bus connects Hy-

dra to I/O devices.  Fig. 1 shows a diagram of the architecture,

while fig. 2 depicts a possible layout for the completed de-

sign.

This paper gives a brief overview of the microarchitecture and

attempts to describe some of the trade-offs that have been

evaluated in the course of revising the design.   Section 2 gives

a brief overview of the simulation environment we are using

to evaluate Hydra, and presents a few of our most interesting

results obtained through simulation.  Section 3 presents a de-

scriptive overview of Hydra’s memory hierarchy, along with

a qualitative view of how the different levels interact.  The

communication buses used to transmit data between the dif-

ferent parts of memory are described in section 4.  Control

mechanisms, including the resource and address arbiters, are

described briefly in section 5.  Finally, section 6 concludes.

2. Simulation Methodology and Results
Hydra is currently being evaluated using a sophisticated, cycle-

accurate memory simulator written in C++ that is interfaced

with the SimOS machine simulator [7].  SimOS allows us to

simulate four fully functional MIPS-II ISA CPUs and a suite

of I/O devices with enough realism to boot and execute the

IRIX 5.3 operating system under our tested applications.  As a

result, system calls and I/O in our benchmarks were simu-

lated with exceptional realism.  Hydra simulates the memory

system using a group of interconnected state machine con-

trollers to evaluate the memory’s response to all memory ref-

erences, both instruction and data, supplied by SimOS.  These

controllers communicate through shared models of the cen-

tral arbitration mechanisms and the caches in order to accu-

rately model the time required to complete all accesses.

This paper focuses on describing the Hydra hardware qualita-

tively, but some key numbers from two applications that we

evaluated are used throughout the text to illustrate the ratio-

nale for key design features of Hydra.  The numbers of inter-

est are plotted in figs. 3–6.  Representative samples from the

core loops of the swim and tomcatv SPEC95FP benchmarks,

parallelized automatically using the SUIF compiler system [8],

were executed on the simulator to get these results.  While we

have examined several other applications from the SPEC suite,

these two have exhibited the most interesting memory system

behavior because they stress the memory system with large

numbers of accesses.  In contrast, the Hydra memory system’s

cache hierarchy easily handles the small data sets of the other

SPEC benchmarks.  In the future, we may examine other ap-

plications with large data sets, such as databases.
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Figure 1: A schematic overview of Hydra
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Figure 2: A possible layout of Hydra
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Figure 3: Resource occupancies in Hydra for several simu-

lated situations. (see section 3 for the L2/L3 cache discus-

sion and section 4 for discussion of the buses)

Figure 4: The % increase in execution time seen as a result of

several architectural decisions, over “perfect” scenarios.

(see section 3 for the L2/L3 cache discussion and section 4

for discussion of the buses)
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Figure 5: The % increase in execution time, over “perfect”

scenarios with no arbitration at all between fully pipelined

state machines, seen as a result of variations in the arbitra-

tion mechanisms and pipelining of the read and write con-

trol state machines. (see section 5 for discussion)

Figure 6: The % increase in execution time seen as a result of

variations in the degree of pipelining used in the read and

write control state machines. (see section 5 for discussion)
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fairly sophisticated arbitration logic between the L1 cache and

the processors.  Such hardware would tend to have an impact

on the processor’s clock speed and/or increase the number of

cycles required for each L1 cache access, which would nega-

tively impact the load-use penalty seen by executing code and

cause more pipeline stalls.  The combination of these three

effects makes the design of a shared-L1 cache a problematic

solution, as shown in [4].

In contrast, Hydra’s independent L1 caches allow each pro-

cessor to have its own small and fast L1 cache that processes

a single access every cycle.  Such caches can be easily opti-

mized to return data within a single cycle.  Our measurements

have shown that in typical applications significantly more than

90% of loads hit in these L1 caches and do not need to progress

further down the memory hierarchy.  The only concession that

must be made to allow multiprocessing is that each data cache

must snoop the write bus and invalidate any lines to which

other processors write, in order to maintain cache coherence.

This can be easily performed using a duplicate set of L1 tags

dedicated to handling snoops on the write bus, and then only

interrupting the rest of the L1 cache when an invalidation is

actually necessary.

3. The Memory Hierarchy
The Hydra memory system uses a four-level arrangement, sum-

marized in Table 1.  Each level is explored further below.

3.1. The L1 Caches
The individual L1 instruction and data caches associated with

each processor are designed to supply data to each processor

in a single cycle while supporting the very high memory band-

width needed to sustain processor performance.  Since 30–

40% of instructions in a typical MIPS-II ISA instruction stream

are loads and stores, dynamically [3], a reasonably efficient

2-way superscalar implementation will have to deal with about

two data memory accesses from each processor every three

cycles, in addition to a constant stream of instruction fetches.

Multiplied by four processors, the first level data caches con-

sidered together must be able to support a throughput of ap-

proximately three accesses per cycle, on average.

A single, shared cache would have to be extensively

multiported and/or multibanked in order to sustain this band-

width.  Additionally, such a shared cache would have to be

larger than the four separate data caches we propose, since it

would have to hold the active working sets of all four proces-

sors.  Third, a shared cache would require a crossbar and/or

Table 1: A summary of the cache hierarchy.  The two entries marked with asterisks, L2 cache bus width and L3 cache associa-

tivity,  were varied during the experiments documented in figures 2 and 3.  A third experiment, comparing a single L2 port

against a pair of separate read and write ports, is also documented in the graphs but is not reflected in this table, since all other

levels of memory are strictly single-ported.
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3.2. The L2 Cache
The large, on-chip L2 cache serves several functions.  First, it

acts as a larger on-chip cache to back up the small L1 caches

with a nearby memory an order of magnitude larger, but five

or more cycles slower.  In practice, the L2’s access latency is

so short that it has little effect on the overall execution time.

With most applications, the L1 caches have already exploited

much of the locality present in memory accesses, so unless

the application’s entire data set fits into the L2 the local cache

hit rate in the L2 tends to be poor — usually well under 50%,

and sometimes under 20%.  More importantly, the L2 cache

serves as a sort of write buffer between the processors and the

outside world.  Since the L1 caches are write-through, the write

bandwidth generated by the four processors would easily over-

whelm off-chip buses.  Using numbers from [3], a typical pro-

gram can be expected to write about once every ten instruc-

tions, or about once every five cycles from a 2-way processor

executing at its peak rate.  With four processors executing at

peak throughput, about 80% of cycles will produce a write

from one of the processors, on average.  Our simulations

showed that after CPU stalls were considered, there were writes

in 40-60% of cycles, typically, supporting these estimates.  The

L2 cache captures all writes and collects them into dirty cache

lines before passing them down to the lower levels of memory

via its writeback data handling protocol.  By doing this, it

reduces the off-chip bandwidth caused by writes to a manage-

able level.  The L2 also acts as a communication medium

through which the four processors can communicate using

shared-memory mechanisms.  Since it always contains the most

up-to-date state for any line, it can supply shared data imme-

diately to any processors that need it.

The communication mechanism through the L2 allows the L1

caches to be simplified — they only have to support the exter-

nal invalidations mentioned in the previous section, instead of

full MESI protocols and L1 cache-to-L1 cache data transfers,

since they cannot hold private data.  With this simple proto-

col, inter-processor communication speed is still quick — just

the round trip time to write to the L2 and then read back into a

different processor’s L1 cache — about 10 cycles, minimum.

Another advantage that this design offers on a low level is

that the L1 and L2 caches may be individually tailored to their

distinct purposes — the L1 caches to handling high-speed,

high-bandwidth accesses in a single clock cycle, and the L2 to

high capacity, filling up all die area not required by the pro-

cessors with as much cache memory as possible.

Fig. 3 shows the occupancies of the cache ports when the L2

cache is single-ported or dual-ported, with dedicated read and

write ports.  The occupancies from the 2-port case clearly show

that most of the bandwidth in the L2 cache is used to absorb

writes from the L1, while only a small percentage of the cycles

are used to handle read accesses (L1 cache refills).  Compar-

ing caches of equal capacity, fig. 4 shows that the performance

loss incurred by using a single-ported L2 cache is at most about

4% over an infinitely-ported cache — or 2% over a dual-ported

cache — largely due to the fact that the small number of read

accesses does not disturb the stream of writes into the L2 much.

In reality,  a single-ported design could have a larger capacity

in a given area, since it could be made using simpler, more

compact SRAM cells.  Due to the negligible performance loss,

we have chosen a single-ported implementation for Hydra.

3.3. The L3 Cache
The off-chip L3 cache offers a cache with another order of

magnitude larger capacity than the L2, but which can only be

accessed through a relatively narrow, 128-bit port that oper-

ates at half of the processor speed.  As a result, it provides

good hit rates with a reasonably short access time of about 15

cycles to the first word, minimum (including L1 and L2 miss

time), but with bandwidth restrictions that are severe com-

pared to the on-chip caches.

The design of this level of the memory hierarchy was fairly

straightforward, but we did examine the consequences of hav-

ing the L3 cache be both direct-mapped and 2-way set asso-

ciative.  Since we do not have on-chip cache tags, the 2-way

version of the cache speculatively starts fetching from both

cache lines contained in a set until the correct way is known.

The former consumes less bandwidth, since erroneous data

from the “wrong” way of the set will not be speculatively

fetched, as shown in fig. 3, while the latter offers higher hit

rates.  The 2-way L3 exhibits extremely high occupancies on

the L3 interface, but its increased hit rate and flexibility in the

face of cache conflicts make it better choice, in general.  Fig.

4 shows that the two applications slowed down about 4% in

both cases due to contention at the interface with the 2-way

associative cache.  However, swim incurred a significant pen-

alty from a cache conflict that could not be averted in the di-

rect mapped cache but was easily avoided in the set-associa-

tive one.  Since the latency of main memory is an order of

magnitude longer than the L3 latency, a small number of these

conflicts can cause a significant slowdown.
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3.4. Main Memory
Even with a large L3 cache, some applications have large

enough working sets to miss in all of the caches frequently,

severely taxing the main memory subsystem.  In order to keep

up with the processors on swim and tomcatv, we have found

that the memory system would have to be able to deliver a 32-

bit word to the chip on every processor cycle, on average —

half the bandwidth of the L3 cache.  With processor speeds of

tomorrow, this will take multiple Rambus-style memory in-

terfaces directly attached to the processor to supply the neces-

sary bandwidth while keeping the number of pins connecting

Hydra to the DRAM reasonable.

3.5. Other Alternatives
While the current Hydra design addresses a fairly high-end

and expensive CPU design, with many high-speed SRAM and

DRAM chips directly attached to the Hydra chip, alternative

designs are possible in systems with different constraints.

A small variation could be made by pulling the L3 cache tags

on-chip, like those in the PowerPC 750 [9].  In the current

design, the L2 cache acts primarily as a buffer for writes and

interprocessor communication, due to the L2’s low local hit

rate on read accesses.  As a result, most data not found in the

L1 has to be recovered from the L3 cache.  Trading some L2

cache for L3 tags, in order to improve the performance of the

L3 cache, might therefore be a reasonable trade-off.  The L2

hit rate will decrease, but that should not affect overall perfor-

mance much.  This would help improve L3 performance in

two ways.  First, the L3 cache could be made highly associa-

tive.  While it is not practical to check more than one or two

off-chip tags at once, many on-chip tags can be checked in

parallel.  The increased associativity would tend to reduce L3

miss rates and thereby increase performance.  Second, the L3

tags could be checked in parallel with each L2 access.  Ac-

cesses that miss in the L3 entirely could be routed directly to

main memory, not wasting any of the L3 cache port’s limited

bandwidth on useless accesses.  Also, even a highly associa-

tive L3 would only exhibit bandwidth requirements similar to

the tested direct-mapped version.  Instead of wasting band-

width speculatively reading multiple lines from a set of asso-

ciative cache lines, the on-chip tags would simply select the

correct line before the off-chip access was started.  The re-

duced contention at the L3 cache port would both improve

performance, as our tomcatv results in fig. 4 show, and save

power by reducing the number of accesses to off-chip memory.

Another interesting variation is a design with no off-chip

SRAM L3 cache at all.  This arrangement is beneficial for

several reasons.  First, high-speed cache SRAM chips are ex-

pensive, so eliminating them would reduce the system cost

dramatically.  Second, approximately half of the I/Os on Hy-

dra are devoted to the L3 cache interface.  Without this cache,

a much cheaper package and simpler motherboard could be

used to hold each Hydra part.  Third, design of the Hydra and

the system would be simpler and therefore cheaper without

the L3, since the design of the L3 interface, from both electri-

cal and control perspectives, is a nontrivial task.  Finally, as

time passes it is becoming possible to integrate larger amounts

of cache memory on the processor die.  Thus, the on-chip

SRAM L2 may eventually become large enough to have a good

local hit rate on read accesses, and therefore perform the job

of the L3 cache in the current design.  Another possibility is

that the SRAM L2 cache could be replaced with on-chip

DRAM, a larger but slower on-chip memory technology, in

order to fully replace the L3 cache with an on-chip alternative

of similar size and speed.  Larger on-chip SRAM caches and

on-chip DRAM are explored in [6].

4. Communication Buses
The read/replace (or “read”)  and write-through (or “write”)

buses, depicted in fig. 1, are the principal paths of communi-

cation across the Hydra chip.  Both buses are controlled in a

pipelined manner, with bus arbitration occurring at least a cycle

before bus use, to keep throughput at one access per cycle

each bus.  Such throughput is necessary to avoid bus satura-

tion in the current implementation of Hydra on applications

such as tomcatv and swim.

4.1. The Read Bus
The read/replace bus is the largest and most important data

highway across the Hydra chip.  It is 256 bits wide, matching

the L1 and L2 cache line size, in order to allow entire lines to

be transmitted across the chip at once.  It is used to move

cache lines around among the on-chip caches and the off-chip

interfaces, since all connect to it.  While only one interface

may broadcast data at a time, many may listen to data broad-

cast across the read bus — for example, data brought in from

memory can be accepted by the L1 cache, L2 cache, and L3

cache interface on the same cycle, from a single broadcast.

Since it is not a crossbar, the read bus must be arbitrated for

before each data broadcast, as described in section 5.  How-

ever, while it performs many tasks, we have found that the bus
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is typically occupied less than 50% of the time, as shown in

fig. 3, even with our most memory-intensive applications.

Contention for this particular resource is thus not a problem.

As fig. 4 indicates, contention for both the read bus and the

write bus slows performance by only a few percent over a

perfect crossbar, even in the worst cases.

4.2. Write Bus
While the read bus is a general-purpose data bus, the write

bus has one specific job — it takes write-through traffic from

the CPUs and sends them into the L2 cache.  Since it only

carries data from one store at a time, it only needs to be 64 bits

wide, at most — the width of the widest MIPS-II store in-

struction.  This dedicated bus is necessary because our L1

caches are writethrough and all stores from the CPUs must be

broadcast due to our simple coherence scheme.  Since the L1

caches do not filter this bandwidth, bus traffic can be quite

high — sometimes exceeding 60% full, as is shown in fig. 3,

even though each access only reserves the bus for a single

cycle — and the bus can be saturated at times of high write

traffic.  Reasonably deep write buffers are needed between

the processors and the write bus to collect and feed stores onto

the bus one by one while not stalling the processors as they

execute bursts of store instructions.  Merging this bus with the

read bus would typically result in a completely saturated bus

and significantly reduced performance, as figs. 3 and 4 indi-

cate.

As well as giving writes a clear path to the L2 cache, the write

bus also serves as a crucial mechanism for synchronizing the

processors.  Writes are serialized as they pass through the write

bus, so multiple writes to the same address will update the

permanent state of the machine in a consistent order.  Since

all state changes are broadcast in this one location, L1 cache

coherence may be maintained by having the L1 caches snoop

on just this bus, and then invalidate their own contents when

they contain a line to which new data is being written.  Since

the write bus carries written data along with addresses that

need to be invalidated, it is fairly easy to use an update cache

protocol instead, should that be desired.  We chose not to use

an update protocol since this generally results in many useless

interventions into other processors’ L1 caches.

One critical issue that should be noted is that the write bus is

not scalable to larger numbers of processors, or to a four-way

MP made up of more complex, and therefore faster, proces-

sors.  This problem is easily addressed in several ways, how-

ever.  First, it would be possible to have multiple write buses

on a single Hydra chip.  As long as they did not carry data

being written to the same address at once, the multiple write

buses would appear just like a single, faster write bus to the

CPUs.  This scheme would require that extra ports be sup-

plied to the L1 tags, to allow multiple snoops and invalida-

tions per cycle, and to the L2 cache, to allow multiple data

words to be written every cycle.  This latter modification would

probably significantly enlarge the L2 cache, and thus could

make this solution impractical.  A second scheme would be to

have a single, line-wide write bus.  Since many bursts of writes

will fall within a cache line or two, merging writes that fall on

single cache lines together in the CPU write buffers would

allow greater store throughput on these critical sections of code.

Third, the write bus could be discarded altogether and a more

conventional MESI coherence protocol between the L1 caches

could be adopted.  This would eliminate the write bus alto-

gether, and would make the system look like a conventional

shared-bus multiprocessor centered around the read bus.  As

such systems have already been examined [5], and have sig-

nificant control overhead, we chose to look at a more simple

and novel architecture.  Finally, in the long-term future, mul-

tiple Hydra-like architectures could be connected hierarchi-

cally on a single chip, to achieve scalability while still includ-

ing high-performance clusters of processors.  Such an archi-

tecture is beyond the scope of this technical report.

5. Control Mechanisms
The buses and caches in Hydra are controlled by a group of

memory control pipelines, each devoted to a particular CPU

or interface.  To prevent the pipelines from attempting to use

resources or addresses simultaneously, access to these two lim-

iting factors is controlled through the resource and address

arbiters.

5.1. Memory Control Pipelines
Eight of the ten different “memory control pipelines” are con-

tained in the CPUs.  Each of the CPU memory controllers in

fig. 1 contains two independent pipelines, one for handling

read accesses — both from instruction fetches and loads —

and one for handling writes from stores.  These pipelines are

used for any access that requires the use of any level of memory

below the L1 caches.  While a processor will make approxi-

mately two read accesses per cycle on typical code [3], most

read accesses are handled by one of the L1 caches.  Thus, a

single read pipeline is sufficient to process the occasional cache
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misses.  On the other hand, due to the writethrough L1 cache

policy, every write made by each processor must pass through

the write pipeline.  On average, typically a store will happen

only about every 5 cycles [3], even with the processor run-

ning at peak efficiency.  However, bursts of stores do appear

frequently in real code.  Hydra only includes one write pipe-

line, but this is usually sufficient because the bursts of stores

may simply be buffered without stalling the processor.  We

have found that the store buffer and write pipeline combina-

tion can be saturated by store-intensive code, but generally

other system resources such as the write bus or the L2 cache

port are also approaching the saturation point at these times,

so the pipeline is not much of a bottleneck.  Therefore, short

of making a much more complex and expensive system, the

single pair of control pipelines on each CPU appear to form a

reasonable design.

The read and write pipelines in each CPU are very similar.

Each consists of three main stages: the L2 cache access (which

is about 5 cycles long), the L3 cache access (about 15 cycles),

and the initiation of a main memory access (about 5–10 cycles).

Each access goes through each stage in succession until the

required cache line is located in one of the levels of the memory

hierarchy.  Resource arbitrations are made at the start of each

section of the pipeline in order to ensure that the pipeline has

reserved needed resources before initiating an access to a cache

or using a bus.  The only real difference between the two pipe-

lines is that the write pipeline writes its data into the L2 from

the write bus at the end of every access, while the read pipe-

line forces the desired cache line out onto the read bus.

In the process of tuning Hydra, these pipelines were adjusted

extensively to improve performance.  Initially, the pipelines

were not actually pipelines — instead, they were just state

machines, that could only process a single access at a time.

The performance of this system was surprisingly good.  On

applications other than swim and tomcatv, the limited number

of accesses that could be processed at once was never a prob-

lem.  These simple controllers became a tremendous perfor-

mance drag with the more memory-intensive applications,

however.  We next evaluated the opposite alternative — con-

trollers that could start processing a new access every cycle.

As shown in fig. 5, performance improved, but not as much as

we had hoped.  In particular, we found that switching to such

an extensively pipelined design undermined our arbitration

priority scheme.  For best performance, a good heuristic is

that the oldest accesses should get resources before newer ones.

However, our old arbiter was often letting young accesses,

going to the L2 cache, pass up older accesses trying to use the

L3 cache or main memory — a problem often called “priority

inversion.”  As a result, we improved the resource arbiter (see

the next subsection), and managed to dramatically improve

results.  Since the “perfect” baseline represented in fig. 5 could

be obtained only with full crossbars instead of buses and with

infinitely-ported caches, we feel that our results are quite good,

given our realistic resource limits.  In a later experiment, we

reduced the degree of pipelining by eliminating the cycle-by-

cycle pipelining in some or all of the three main pipeline ac-

cess stages.  This allowed only a single access to be handled

in each of these main stages at a time.  The surprising results

are shown in fig. 6.  The more coarse pipelines were actually

slightly better than the full cycle-by-cycle ones, even though

they are much simpler and easier to build.  The reason is simple

— along with the improved arbiter, the coarser pipeline re-

duced the amount of priority inversion that occurred.  Han-

dling more than one access per main pipe stage, in contrast,

turned out to be unnecessary — the coarser stages were suffi-

cient.

The remaining two pipelines are in the main memory and I/O

interfaces.  These controllers process data returning from

memory or I/O requests, sending it to the appropriate caches

on the Hydra chip as it arrives.  They are much simpler cous-

ins to the CPU controllers, since they basically just respond to

all data arriving from off-chip in a programmed manner.  Like

the other pipelines, they were gradually pipelined from simple

state machines.  However, the limited bandwidth of the main

memory and I/O buses also imposed a limit on the degree of

pipelining that was necessary.  The main memory controller

only needed to be divided into two main pipeline sections —

one for sending data to the L1/L2 and one for recording cache

lines into the L3 cache.  Currently, the I/O controller is still

completely unpipelined, since that is enough to handle our

simulated I/O traffic.

5.2. Resource Arbiter
The resource arbiter is responsible for allocating the chip’s

key resources — the buses, caches, and some buffers — for

the next several cycles ahead.  Many arbitration mechanisms

handle requests on a cycle-by-cycle or resource-by-resource

basis, but the Hydra arbiter processes entire “resource requests”

at once — requests for a group of resources required by a

pipeline over the course of the next 5-20 cycles.  Each CPU
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pipeline sends the arbiter a resource request before each of

the three main pipe stages, and then stalls until the arbiter tells

the pipeline it may continue.  The memory and I/O pipelines

work similarly, but are designed to make several small resource

requests as words of data are brought into Hydra from off-

chip.  Since pipelines send out their resource requests at least

a cycle before any of the critical resources are actually needed

for processing, the resource arbiter causes no unnecessary

delays when resources are free.  Some of the resource requests,

especially those involving the L3 cache, may be for quite com-

plicated combinations of buses and caches on different cycles.

The arbiter imposes a fixed priority on the requests, depend-

ing upon the pipeline and the request type.  All memory and I/

O pipeline requests always get first priority, followed by main

memory requests, L3 cache requests, and finally L2 cache re-

quests.  Among the CPU pipeline request types, the read pipe-

lines generally have priority over the write pipelines.  How-

ever, each CPU may select to invert the priority of its read and

write pipelines intentionally on a cycle-by-cycle basis, giving

its writes higher priority, in case its write buffer is nearly full.

We found this feature to be quite helpful with memory-inten-

sive applications that must frequently recover cache lines from

the L3 cache or main memory in order to handle their

writethrough traffic, since even a few L2 cache misses on

writethroughs can allow a CPU fill up its write buffer.  Priori-

ties among the different CPUs are changed round-robin, so

that no CPU may hog the arbiter.  We tried more complex

inter-CPU priority schemes, also, but they did not affect per-

formance significantly.

As shown in fig. 5 and discussed in the previous subsection,

the arbiter has gone through two main stages of development

in order to prevent accidental priority inversions.  The first

version of the arbiter checked all pending resource requests

from all pipelines on every cycle.  If a request failed, it was

tried again on the next cycle.  If a request succeeded, its re-

source reservations for the next several cycles were recorded,

and the requesting pipeline was allowed to continue.  This

scheme had the unfortunate side effect of giving the simple

L2 cache accesses higher priority than the complex L3 ac-

cesses.  Since these simpler requests demanded fewer re-

sources, it was easier for them to find all of their resources

free on any given cycle.  They would then reserve resources

for the next several cycles ahead, and frequently block pend-

ing L3 cache accesses further in the process.  This resulted in

some references taking thousands of cycles to complete, sim-

ply because they were never able to acquire resources.  The

second version of the arbiter solved this problem by handling

each resource request only once, on the cycle it arrives at the

arbiter.  On that cycle, the arbiter scans ahead until it finds the

earliest time that the request can be handled.  After finding

this time, the arbiter reserves the resources immediately and

notifies the pipeline how many cycles it must wait.  While the

simple L2 cache accesses are still usually delayed less than

the more complex L3 accesses by this arbitration mechanism,

the arbiter can guarantee that the L3 accesses are able to get

the minimum delays that their resource requirements allow.

5.3. Address Arbiter
If multiple accesses to the same address are processed simul-

taneously by different pipeline controllers in Hydra, problems

may occur.  The first problem is that multiple copies of a single

cache line may be generated within an associative set of lines.

If a pipeline controller misses in a cache, it will immediately

attempt to recover the line from the next level of the cache

hierarchy.  Unfortunately, if another controller is already pro-

cessing a miss to the same line, both will return with their

own copies.  Along with wasting precious cache space on re-

dundant data, duplicate lines may cause functional errors if

writes are made to both copies, since eventually both copies

of the cache line will be written back to lower levels of memory

— so the writes to the copy written back first will be errone-

ously overwritten.  A similar problem can occur if one con-

troller is writing back a dirty line to the next level of memory.

While the line is being written back, it is no longer listed in

the tag directory of the cache that is discarding it.  Hence,

another controller may miss in the cache and subsequently

fetch the old, stale version from the lower level of memory

while the more recent version is still in the process of being

written back.  The cache will refill with the stale data, and the

written-back modifications to the line will be permanently lost.

Making these problems worse, each access may involve up to

three different cache lines — the line requested, the L2 cache

writeback, and the L3 cache writeback.

Hydra’s address arbiter solves these problems by simply for-

bidding multiple accesses to the same address in the L2/L3/

main memory system until all previous accesses to that ad-

dress have completed.  In order to protect all three cache lines

that an access may use with only a single arbitration, the Hy-

dra address arbiter actually checks only the address bits that

are used for indexing into both the L2 and L3 — 8 bits in the
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current implementation.  This works because a line and any

writebacks it may generate will always be in the same asso-

ciative set, so by protecting its sets in both the L2 and L3 we

automatically protect all three lines that might be active at

once.  The address arbiter “checks in” each access when it

initially tries to access the L2 cache tags — always the first

step of any access.  Most accesses continue on without prob-

lems, but if an address collision is detected the L2 cache ac-

cess is aborted and the access is queued up behind all previous

accesses to that particular index.  To keep the mechanism

simple, no prioritizing is performed among the queued ac-

cesses.  When all previous accesses to that index have com-

pleted, the access is freed and it retries the aborted L2 cache

access.

While this mechanism might appear to be rather heavy-handed

and excessive, in reality it has a negligible impact on perfor-

mance, as fig. 5 demonstrates.  There are three basic reasons

why it is not a problem.  First, the mechanism is not invoked

by reads that hit in the L1 cache, so the number of accesses

“checking in” to the arbiter is reasonably small.  Second, even

8-bit indices offer 256 different possible values.  Since there

are typically nowhere near that many active references reserv-

ing addresses at once in Hydra, odds of a random collision are

reasonably small.  Finally, the mechanism allows accesses to

the same address to work together more efficiently.  When

multiple processors attempt to read the same cache line from

the L2 cache and miss, the address arbiter will allow only the

first pipeline controller to actually see and process the miss.

The others are stalled by the address arbiter, and not using any

resources in the meantime, until after the first controller reads

the line into the L2 cache.  Any trailing processors then just

hit in the L2 cache, effectively riding on the coattails of the

first access.

6. Conclusions
As more transistors are integrated onto larger dies, single-chip

multiprocessors integrated with large amounts of cache

memory will soon become a feasible alternative to the large,

monolithic uniprocessors that dominate today’s microproces-

sor marketplace.  Hydra offers a promising way to build a

small-scale MP-on-a-chip with a fairly simple design while

maintaining excellent performance on a wide variety of appli-

cations.  Simple buses are used to connect several optimized,

single-ported caches together.  With the write bus based archi-

tecture, no sophisticated coherence protocols are necessary to

keep the on-chip caches coherent.  Off-chip memory is con-

trolled through two glueless ports to attached SRAM and

DRAM chips.  Arbitration of key resources and addresses is

accomplished with two custom mechanisms that have been

highly tuned.  With this balance between complexity and per-

formance, we believe Hydra offers a promising model for

future MP-on-a-chip designs.
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