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ABSTRACT 
In this paper, we provide examples of how thread-level 
speculation (TLS) simplifies manual parallelization and enhances 
its performance.  A number of techniques for manual 
parallelization using TLS are presented and results are provided 
that indicate the performance contribution of each technique on 
seven SPEC CPU2000 benchmark applications.  We also provide 
indications of the programming effort required to parallelize each 
benchmark.  TLS parallelization yielded a 110% speedup on our 
four floating point applications and a 70% speedup on our three 
integer applications, while requiring only approximately 80 
programmer hours and 150 lines of non-template code per 
application.  These results support the idea that manual 
parallelization using TLS is an efficient way to extract fine-grain 
thread-level parallelism.   

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming – 
parallel programming; D.2.2 [Software Engineering]: Design 
Tools and Techniques; C.1.2 [Processor Architectures]: 
Multiple Data Stream Architectures (Multiprocessors) – multiple-
instruction-stream, multiple-data-stream processors (MIMD); 
C.1.4 [Processor Architectures]: Parallel Architectures. 

General Terms 
Design, Algorithms, Performance, Measurement. 

Keywords 
Chip multiprocessor, data speculation, manual parallel 
programming, multithreading, feedback-driven optimization. 

1. BACKGROUND 
As the number of transistors that can fit within a die has 

grown according to Moore’s Law, computer hardware has grown 
in complexity.  While hardware can rapidly evolve, operating 
systems and software must vary more slowly for a number of 

reasons.  First, successful computer architectures support a large 
base of legacy applications, which are difficult to port to new 
platforms.  Additionally, programmers become familiar with a few 
standard languages and hardware interfaces and seldom want to 
migrate to new ones.  Finally, the efficient development of 
applications often requires complex code development tools, and 
the creation or purchase of these tools can be a significant barrier 
to entry for innovative hardware platforms. 

As a result, often most applications do not utilize the newest 
features of a hardware platform.  For example, multiprocessor 
computers are becoming increasingly common, with even some 
consumer desktop systems utilizing dual processors.  However, 
few applications currently make efficient use of multiple 
processors to enhance single application performance.  Rather, 
processors are assigned to separate applications, resulting in 
suboptimal single application performance and frequent processor 
idle cycles from having too few applications available to execute. 

The primary problem is that creating parallelized versions of 
legacy code is difficult.  Even with a good tool chain including 
profilers and parallelizing compilers [1][2][9][11], automated 
parallelization has proven to be a very difficult problem [19].  
While successful for certain scientific applications, automated 
parallelization has typically provided poor parallel performance 
on general-purpose applications, especially integer ones.  Manual 
parallelization can provide good performance on a much wider 
range of applications, but typically requires a different initial 
program design and programmers with additional skills.  Parallel 
programs require data structures and algorithms intended for 
parallel processing.  Data placement and data replication must be 
considered more extensively to minimize interprocessor access 
contention and latency.  Likewise, algorithms must be designed to 
allow concurrent and synchronized accesses without data races or 
data access hot spots.  For example, single counters may need to 
be replaced with distributed counters, and multiple entry points 
may need to be added to linked lists that would have performed 
well with only a single entry point in a uniprocessor algorithm. 

In this paper we show that the use of thread-level speculation 
(TLS) for manual parallelization, along with only minimal 
additional support in the software development tool chain, can 
provide much of the ease of automated parallelization.  At the 
same time, it achieves the high performance and broad 
applicability characteristic of conventional (non-TLS) manual 
parallelization.  In conventional manual parallelization, software 
development is best targeted to a parallel platform from the start.  
Otherwise, extensive redesign of applications to use explicitly 
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parallel data structures and algorithms is often required.  In 
contrast, we demonstrate large parallel speedups on a diverse set 
of uniprocessor applications, while changing or adding very few 
lines of code.  With TLS-driven manual parallelization almost all 
of the application design is done for a uniprocessor target, and 
only a small effort is required at the end to transform the 
application into a high-performance parallel application.  This 
simple transformation to parallel code is possible because TLS 
automatically detects and prevents data races, one of the main 
hazards that makes conventional manual parallelization so 
difficult.  In this way, manual parallelization with TLS provides 
programmers with a new and incremental approach to 
incorporating parallel performance into legacy applications. 

The rest of this paper is organized as follows.  In the next 
section we will explain TLS, our architecture and the benchmarks 
we chose to parallelize.  In Section 3, we discuss two simple 
examples of code containing thread-level parallelism (TLP), to 
show the simplicity and performance advantages of applying TLS 
to manual parallelization, rather than using conventional non-TLS 
manual parallelization.  We also use these examples to introduce 
some useful source code transformations that allow TLS to extract 
TLP from many types of code that exhibit parallelism.  Section 4 
focuses upon the results of parallelizing the benchmarks.  Section 
5 frames the current research within the context of previous work, 
and Section 6 presents our conclusions. 

2. TLS AND THE TEST PLATFORM 
This section begins with an explanation of the theory and 

mechanisms of thread-level speculation (TLS).  Next it discusses 
the specific TLS implementation simulated in our experiments.  
Finally, it describes our simulator and compilation environment.   

TLS is the process of speculatively executing interdependent 
threads out-of-order, while appearing to have executed them in 
order.  In this paper, the threads will be formed by splitting the 
dynamic execution path of a single-threaded application into 
multiple ordered threads.  A loop in a single-threaded application 
is a common place to create TLS threads, one for each iteration of 
the loop body, as shown in Figure 1.  Because each TLS thread is 
a portion of the dynamic execution path of the original single 
thread, the TLS threads are both interdependent and also ordered 
according to their order in the original single-threaded 
application.  To enforce correctness, hardware must make each 
thread appear to have executed sequentially in the original order.   

In a typical TLS system [7][13][17][21], several consecutive 
threads are executing at any moment.  The first in order is 
nonspeculative; the rest are speculatively executing ahead in time.  
When the nonspeculative thread completes, the next thread in 
order becomes nonspeculative.  Speculative reads and writes are 
handled specially.  Each speculative thread must have its writes 
buffered until the time that it becomes nonspeculative, at which 
time it commits the writes.  Additionally, speculative threads must 
ensure that any values that they read include the effects of writes 
stored in buffers of less speculative threads, but not writes from 
more speculative threads.  For example, if a speculative thread 
creates and buffers a new value that a more speculative thread 
subsequently reads, the new value must be forwarded to the more 
speculative thread (Case 1 in Figure 1).  On the other hand, if a 
new value is created, but the old value has already been used by a 
more speculative thread, that thread and all threads following it 
must discard their results and restart execution with the new, 
correct value (Case 2).  This is known as a data dependence 
violation, and, as shown in Figure 1, the cost of discarded 
execution time plus the thread restart overhead can waste time and 
cause large performance losses.  Hence, reducing violations is 
important in any code with frequent inter-thread dependences. 

The TLS hardware implementation used for this paper is the 
Stanford Hydra chip multiprocessor (CMP).  This CMP comprises 
four pipelined MIPS-based R3000 processor cores, each with 
private L1 instruction and data caches (Figure 2).  The four 
processors share an on-chip, unified L2 write-back cache, and 
each processor executes a single thread.  Each processor’s L1 data 
cache is write-through, and the other processors snoop the bus 
connecting the processors and the L2 cache to permit data 
dependence violation detection.  Dependences are tracked on a 

Figure 1. Thread-level speculation 
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per-word basis, thereby eliminating almost all violations due to 
false sharing.  Speculative result buffering is achieved by 
buffering speculative writes to the L2 cache in a group of 32-
cache-line buffers, one for each processor.  These buffers also 
monitor read requests made to the L2 cache.  This allows them to 
forward data created by writes from less speculative processors to 
satisfy the requests of more speculative processors.  Other 
hardware in the L1 data caches enforces the TLS protocols, such 
as the detection and processing of dependence violations.  While 
the CMP hardware follows a partial store ordering memory 
consistency model, the TLS system causes the CMP to appear to 
the programmer like a single out-of-order processor, so the 
programmer need not consider memory consistency issues.  
Further details of this design can be found in Table 1 and [13]. 

The support for TLS is implemented in a combination of 
hardware and software for ease of implementation and 
adaptability of the protocols, although this does increase the 
thread control overheads.  Table 2 provides information on these 
software overheads.  The first three can be statically analyzed, and 
occur whenever a speculative loop is started or ended and 
whenever iterations in a speculative loop are committed.  The 
remaining four overheads occur dynamically due to violations 
detected on this CPU or on less speculative CPUs and due to 
stalls for speculative threads resulting from buffer constraints or 
the handling of an exception.  The TLS system allows speculation 

only on loops and at a single level, i.e. not speculation on a loop 
nested within another speculative loop.  The system could have 
conducted procedural speculation via the use of different software 
handlers [13], but loop-only speculation was chosen for its lower 
overheads.  As a result, the performance losses resulting from the 
speculation software handler overheads are typically quite small.   

To simulate this TLS system, a cycle-accurate, execution-
driven simulator was used to execute all application instructions, 
including the speculation software handlers.  The simulator can 
accurately model a realistic memory system, including the effects 
of bus contention and memory access queuing.  A perfect memory 
model was also simulated to gauge the performance losses due to 
not scaling the memory system with the number of processors 
running in parallel.  All performance measurements presented 
here were done using applications compiled by GCC 2.7.2 with 
optimization level -O2 on an SGI workstation running IRIX 5.3. 

3. METHODS FOR USING TLS 
In this section, we will use two simple examples to illustrate 

many important points about how a programmer can use TLS to 
parallelize applications.  First, we will show the ease of using TLS 
versus conventional (non-TLS) manual parallelization.  Second, 
we will discuss the performance advantages of using even simple 
TLS parallelization versus a thorough redesign of applications 
using conventional parallelization.  We will also show the 
performance advantages of manual over purely automatic TLS 
parallelization.  Third, we will explain several types of source 
code transformations that can expose more of the TLP inherent in 
applications.  Fourth, we will illustrate the very different code 
development cycle experienced by a manual TLS programmer.  
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Figure 3. Organization of the heap array 

Table 1. Memory system specifications 

Memory system 
Characteristic 

L1 cache L2 cache Main memory 

Configuration 
Separate  

I & D SRAM 
cache pairs for 

each CPU 

Shared,  
on-chip 

SRAM cache 
Off-chip 
DRAM 

Capacity 16 KB each 2 MB 256 MB 

Bus width 
32-bit 

connection 
to CPU 

256-bit read bus 
and  

32-bit write bus 

64-bit 
SDRAM  
at half of  

CPU speed 

Access time 1 CPU cycle 5 CPU cycles At least  
50 cycles 

Associativity 4-way 4-way N/A 
Line size 32 bytes 64 bytes 4 KB pages 

Write policy 
Writethrough, 

no write 
allocate 

Writeback, 
allocate on 

writes 

“Writeback” 
(virtual 

memory) 

Inclusion N/A 
Inclusion 

enforced by L2 
on L1 caches 

Includes all  
cached data 
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Figure 4. Top node removal and update of the heap 

Table 2. Loop-only TLS overheads 

Overheads for 
loop-only TLS Software handler Instruction 

count 

Start loop ~30 
End of each  

loop iteration 12 
Regular 
events 

Finish loop ~22 
Violation:  local 7 

Violation:  receive from another CPU 7 
Hold:  buffer full 12 

Irregular 
events 

Hold:  exception 17 + OS 
 



3.1 Heap Sort Example 
The first example is C code that implements the main 

algorithm for a heap sort.  In this algorithm, an array of pointers to 
data elements is used to sort the elements.  Encoded in memory as 
a simple linear array (Figure 3A), the node array is actually 
interpreted as a balanced binary tree by the algorithm (Figure 3B).  
Tree sibling nodes are recorded consecutively in the array, while 
child nodes are stored at indices approximately twice that of their 
parents.  For example, Node 2 is located directly after its sibling 
(Node 1) in the array, while Node 2’s children (Nodes 5 and 6) 
are located adjacent to each other with indices approximately 
twice that of Node 2.  This structure allows a complete binary tree 
to be recorded without requiring explicit pointers to connect 
parent and child nodes together, because the tree structure can 
always be determined arithmetically.  In this example, each node 
of the tree consists of a single pointer to a variable-length data 
element located elsewhere in memory (Figure 3C). 

The heap is partially sorted.  The element pointed to by any 
parent is always less than the element pointed to by each of the 
children, so the first pointer always points to the smallest element.  
Nodes are added to the bottom of the tree (highest indices) and 
bubble upwards, switching places with parents that point to 
greater valued elements.  Final sorting is conducted by removing 
the top node (first pointer) and iteratively filling the vacancy by 
selecting and moving up the child pointer that points to the lesser 

element (Figure 4).  We will focus only on this final sorting, 
which typically dominates the execution time of heap sort.   

The code is provided in Figure 5.  It can be used to count the 
number of appearances of each (linguistic) word in a passage of 
text.  It has been optimized for uniprocessor performance, so that 
parallelization with TLS can only derive speedups due to true 
parallelism and not due to more efficient code design.  The code 
processes the pre-constructed heap node[], where each node 
(e.g. node[3]) is a pointer to a string (line 2).  As each top node 
is removed and replaced from the remaining heap, a count is kept 
of the number of instances of each string dereferenced by the 
nodes (line 17).  Each string and its count are written into a 
(previously allocated) result string (line 2) at the position pointed 
to by inRes (lines 9-16).  To do this, the top node of the heap 
(node[0], which points to the alphabetically first string) is 
removed and compared to the string pointed to by the previous 
top node removed (lines 8 and 9).  If they point to dissimilar 
strings, then all nodes pointing to the previous string have been 
removed and counted, so the string and its count are written to the 
result string and the count is reset (lines 9-16).  In all cases, the 
count for the current string is incremented (line 17) and the heap 
is updated/sorted in the manner described above (lines 18-23).  
The heap is structured so that below the last valid child on any 
tree descent, the left and right child are always two NULL pointer 
nodes (line 18).  This whole counting and sorting process is 
conducted until the heap is empty (line 8).  Then the results for 
the last string are written to the result string (lines 25-28). 

3.2 Parallelizing with TLS 
When parallelizing with TLS, the programmer first looks for 

parts of the application with some or all of the following qualities.  
These parts should dominate the execution time of the application 
with that time concentrated in one or more loops, preferably with 
a number of iterations equal to or greater than the number of 
processors in the TLS CMP.  These loops should contain fairly 
independent tasks (few inter-task data dependences), with each 
task requiring from 200 to 10,000 cycles to complete, and all tasks 
being approximately equal in length for good load balancing.  For 
the example program, we see that the two loop levels where we 
can parallelize this code are either the inner loop or the outer 
loop, i.e. within a single event of removing node[0] and 
updating the heap (lines 8-24), or across multiple such events.  
The first is not good due to the small parallel task sizes involved, 
which are better targeted with techniques that exploit ILP.  The 
second level is much better suited to the per-iteration overheads of 
the TLS system.  But, parallelizing across multiple node removals 
and heap updates requires each thread to synchronize the reading 
of any node (lines 8, 9, 15, 18, 20, 22) with the possible updates 
of that node by the previous threads (line 22).  The top node will 
always require synchronization, while nodes at lower levels will 
conflict across threads with a decreasing likelihood at each level.  

This example can be parallelized using TLS simply by 
choosing and specifying the correct loop to parallelize.  In this 
example, changing line 8 to use the special keyword pwhile 
rather than while can be used with a fairly simple source-to-
source translator to trigger the automatic generation of TLS 
parallel code [13].  The translator performs several operations.  
First, it analyses the loop to determine loop-carried dependences, 
i.e. dependences that span iteration boundaries.  In this example, 

1:  #define COLWID (30) 
2:  char *result, *node[]; 
 

3:  void compileResults() { 
4:   char *last, *inRes; 
5:   long cmpPt, oldCmpPt, cnt; 
6:   int sLen; 
 

     //  INITIALIZATION 
7:   inRes = result; last = node[0]; cnt = 0; 
 

     //  OUTER LOOP - REMOVES ONE NODE EACH ITERATION 
8:   while (node[0]) { 
      //  IF NEW STRING, WRITE LAST STRING AND COUNT  
      //  TO RESULT STRING AND RESET COUNT 
9:    if (strcmp(node[cmpPt=0], last)) { 
10:    strcpy(inRes, last); 
11:    sLen = strlen(last); 
12:    memset(inRes+sLen, ' ', COLWID-sLen); 
13:    inRes += sprintf(inRes+=COLWID,"%5ld\n",cnt); 
14:    cnt = 0; 
15:    last = node[0]; 
16:   } 
 

17:   cnt++;  
 

      //INNER LOOP - UPDATE THE HEAP, REPLACE TOP NODE 
18:   while (node[oldCmpPt=cmpPt] != NULL) {                  
19:    cmpPt = cmpPt*2 + 2; 
20:    if (node[cmpPt-1] && !(node[cmpPt] &&  
        strcmp(node[cmpPt-1], node[cmpPt]) >= 0)) 
21:     --cmpPt; 
22:    node[oldCmpPt] = node[cmpPt]; 
23:   }  
24:  } 
 

     //  WRITE FINAL STRING AND COUNT TO RESULT STRING 
25:  strcpy(inRes, last); 
26:  sLen = strlen(last); 
27:  memset(inRes+sLen, ' ', COLWID-sLen); 
28:  sprintf(inRes+=COLWID, "%5ld\n", cnt); 
29: } 

Figure 5. Code for top node removal and heap update 



these can occur for the variables node, last, inRes, and cnt, 
and also for any access to data dereferenced from a pointer.  All 
variables and accesses that can have loop-carried dependences 
appear in boldface type in Figure 5.  Then, it transforms the code 
so that during every iteration the initial load from and the final 
store to these variables or to dereferenced pointers occur from or 
to memory, preventing the data from being register-allocated 
across iteration boundaries.  By forcing data to memory, the 
transformed source code ensures that the TLS system can detect 
inter-thread data dependence violations.  Meanwhile, all variables 
without loop-carried dependences are made private to each thread 
to prevent false sharing and violations.  Additionally, for peak 
performance, the source code is transformed to register-allocate 
variables having loop-carried dependences in all places other than 
the first load and the final store in each iteration.   

This parallelized TLS code was executed upon a heap 
comprising the approximately 7800 words in the U.S. 
Constitution and its amendments.  The TLS CMP provides a 
speedup of 2.6 over a single-processor system with the same, 
unscaled, realistic memory system.  Very little of the difference 
between the achieved speedup and a “perfect” speedup of 4 is due 
to not scaling the memory system, as the speedup when both have 
a perfect memory system is only 2.7.  Likewise, the requirement 
that shared variables not be register-allocated causes only a 2% 
slowdown, if the code is executed sequentially.  This is what we 
call the base TLS parallelization. 

3.3 Ease of TLS Parallelization 
The base case illustrates the simplicity of TLS programming 

and the efficiency of its resultant programs, in contrast to the 
complexity and overheads of conventional parallelization.  Like 
TLS, conventional parallelization requires that loop-carried 
dependences be identified.  However, once this has been done, the 
difficult part of conventional parallelization begins. 

Accesses to any dereferenced pointer or variable with loop-
carried dependences could cause data races between processors 
executing different iterations in parallel.  While synchronization 
must be considered for each access, to avoid poor performance 
only accesses that could actually cause data races should be 
synchronized with each other.  However, determining which 
accesses conflict requires either a good understanding of the 
algorithm and its use of pointers or a detailed understanding of the 
memory behavior of the algorithm.  Pointer aliasing and control 
flow dependences can make these difficult.  Finally, a method for 
synchronizing the accesses must be devised and implemented.  
This typically requires changes in the data structures or algorithms 
and must be carefully considered to provide good performance.  
None of this is necessary when parallelizing with TLS. 

In this example, one set of accesses that must be explicitly 
synchronized when using conventional parallelization are the read 
accesses of the nodes (lines 8, 9, 15, 18, 20, 22) with the possible 
updates of those nodes by earlier iterations (line 22).  To do this a 
new array of locks could be added, one for each node in the heap.  
However, this would introduce large overheads.  Extra storage 
would be required to store the locks.  Each time a comparison of 
child nodes and an update of the parent node were to occur, an 
additional locking and unlocking of the parent and testing of locks 
for each of the child nodes would need to be done.  Furthermore, 
doing this correctly would require careful analysis.  The ordering 

of these operations would be critical.  For example, unlocking the 
parent before locking the child to be transferred to the parent node 
would allow for race conditions between processors.  Worse yet, 
these races would be challenging to correct because they would be 
difficult to detect, to repeat and to understand.   

One could attempt a different synchronization scheme to 
lower the overheads.  For example, each processor could specify 
the level of the heap that it is currently modifying, and processors 
executing later iterations could be prevented from accessing nodes 
at or below this level of the heap.  While this would reduce the 
storage requirements for the locks to just one per processor, it 
would introduce unnecessary serialization between accesses to 
nodes in different branches of the heap.  Another alternative 
would be to have each processor specify only the node which is 
being updated, so processors executing later iterations would stall 
only on accesses to this node.  But, locking overheads would still 
exist in either case, and care would still need to be taken to 
prevent data races.  Alternatively, the choice could be made to 
completely replace the uniprocessor heap sort with a new 
algorithm designed for parallelism from the start.  But, this would 
likely be more complex than any solution discussed so far, and the 
support for parallelism will still introduce overheads into any 
algorithm that has inter-thread dependences.  As this example 
shows, parallelization without TLS can be much more complex 
and error-prone than parallelization with TLS.  Because the 
complexity of redesign versus incremental modification becomes 
greater for larger, more complex programs, its simplicity is even 
more of a benefit for real-world applications. 

3.4 Performance of TLS Parallelization 
The base case also illustrates the second point of this section, 

that parallelization with TLS can often yield better performance 
than parallelization without TLS [14].  This occurs for two 
reasons.  First, the hardware-assisted automatic detection and 
correction of dynamic dependence violations reduces 
communication overheads.  Furthermore, it is often possible to 
speculate beyond potential dependences, eliminating all 
synchronization stall time when the potential violations do not 
actually occur.  We call this optimistic parallelization.  It can be 
much more efficient than the pessimistic static synchronization 
used in conventional parallelization, which synchronizes on all 
possible dependences, no matter how unlikely.   

It is worth considering this point further.  Very often, TLS 
can improve the performance of an application that has already 
been manually parallelized by allowing some optimistic 
parallelization [10].  Less apparent is that a single-threaded 
application only incrementally modified using manual TLS 
parallelization can sometimes provide better performance than an 
application that has been completely redesigned for optimal 
parallel performance using only conventional manual 
parallelization.  This is because code optimized for non-TLS 
parallel performance introduces overhead over uniprocessor code 
to support low-contention parallel structures, algorithms and 
synchronization.  The advantage that results from this redesign for 
conventional parallelism can be less than the combined 
advantages of using TLS and starting with more efficient, optimal 
uniprocessor code.  Given the difficulty of redesigning legacy 
code and of parallel programming, this can make manual 



parallelization with TLS a better alternative than application 
redesign using conventional manual parallelization. 

3.5 Optimizing TLS Performance 
We will now cover a variety of methods for achieving better 

TLS parallel performance.  This will allow us to focus on three 
main points:  1) introducing the reader to the process of parallel 
programming using TLS, which is substantially different from 
conventional parallel programming; 2) demonstrating several 
categories of source code transformations that allow extraction of 
more of the inherent TLP from applications; and 3) indicating 
situations in which a minor manual adjustment can substantially 
outperform the automatic base parallelization.  We will show how 
the programmer can detect and understand sources of performance 
loss and use this to conduct incremental changes to the original 
source code to improve performance.  This process is repeated 
until no further TLP can be exposed to the TLS hardware. 

First, a programmer conducts the base TLS parallelization, as 
described above, and then executes the resultant code against a 
representative data set.  The TLS hardware is capable of reporting 
instances of dependence violations, including data on which 
processors were involved, the address of the violating data 
element, which load and store pairs triggered the violation, and 
how much speculative work was discarded.  This data is then 
sorted by each load-store violation pair.  By totaling the cycles 
discarded for each pair and sorting the pairs by these totals, the 
causes of the largest losses can be known.  Using this ranking, a 
programmer can better understand the dynamic behavior of the 
parallel program and more easily reduce violation losses.   

Compared to non-TLS parallel programming, parallelization 
with TLS allows the programmer to more quickly transform a 
portion of code.  The key to this is that TLS provides the ability to 
easily test the dynamic behavior of speculatively parallel code 
(while it correctly executes in spite of dependence violations) and 
get specific information about the violations most affecting 
performance.  The programmer can then focus only on those 
violations that most hamper performance, rather than being 
required to synchronize each potentially violating dependence to 
avoid introducing data races into the program. 

Before discussing specific code transformations for 
performance enhancement, we will summarize the general 
approach to reducing performance-limiting violations.  Typically 
parallel performance is most severely impacted by a small number 
of inter-thread data dependences.  Moving the writes as early as 
possible within the less speculative thread and the reads as late as 
possible within the more speculative thread usually reduces the 
chance of experiencing a data dependence violation.  For loop-
based TLS, this corresponds to moving performance-limiting 
writes toward the top of the loop and delaying performance-
limiting reads toward the end of the loop; in the limit, the first 
load of a dependent variable occurs just prior to the last store, 
forming a tiny critical region.  Furthermore, moving this critical 
region as close as possible to the top of the loop minimizes the 
execution discarded when violations do occur.  Finally, 
constructing the loop body to ensure that the critical region 
always occurs approximately the same number of cycles into the 
execution of the loop and requires a fairly constant time to 
complete allows the speculative threads to follow each other with 
a fixed inter-thread delay without experiencing violations.  In 

contrast, critical sections that occur sometimes early and 
sometimes late increase violations due to late stores in less 
speculative threads violating early reads in more speculative ones. 

3.6 Automatic Optimization 
We will now consider optimizations that can be done 

automatically.  More than three violations per committed thread 
occur while executing the base parallelization.  The store of last 
in line 15 often violates the speculative read of last in line 9.  
The same occurs with cnt (the store in line 17 violates the load 
in line 13), inRes, and several other variables.  To reduce these 
violations, we can minimize the length of the critical regions from 
first load to last store.  For example, the store of last in line 15 
can be moved right after the load in line 9.  Because each thread 
optimally executes with a lag of one-quarter iteration from the 
previous thread on a four-processor CMP, this makes it unlikely 
that any other thread will be concurrently executing the same 
critical region.  To hoist the store of last, the previous value 
must first be saved in a temporary variable for lines 10 and 11.  
Research shows that this transformation can be automated [19].  
We can also move these critical regions as early in each thread as 
possible  For example, line 17 (the increment of cnt) can be 
moved above the conditional block (lines 9-16).  Automatically 
determining and conducting this is complex [19].  However, we 
will assume that automated parallelization can conduct all these 
transformations optimally to strengthen the argument that manual 
TLS programming can still further improve performance.   

When these transformations have been completed for all 
variables that can benefit, surprisingly the performance remains 
virtually unchanged.  Upon inspecting the violation report, we see 
that most of the lines which were causing violations before are no 
longer significant sources of losses, but now previously 
unimportant load-store violation pairs dominate performance by 
causing much larger losses than before.  Threads now progress 
farther per violation, but nonetheless violate anyway before they 
can successfully commit.  This results in a lower violation count, 
but more discarded execution time per violation.  This is shown in 
Figure 6, which shows speedup results with real and perfect 
memory systems and the number of violations per committed 
thread, for each version of the example application. 

Unfortunately, the performance at this point (a speedup of 
2.6) represents an optimistic upper bound on the current 
capability of automated TLS parallelization.  We have optimally 
used all the automated methods of which we are aware that can 
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benefit this example.  However, manual TLS parallelization can 
provide still more speedup (a final speedup of 3.4) with a 
minimum of code transformation.  This is because a programmer 
can do more complex value prediction than an automated 
parallelizer.  Also, automated parallelization is constrained to 
allow only transformations that appear to preserve the original 
execution ordering and data structures, even if a minor, obvious 
change in them could enhance performance.  This arises because 
the original program was targeted to a uniprocessor, where data 
contention or value prediction was never an issue, so often a small 
and obvious change can lessen contention or reduce dependences. 

The techniques to be discussed below require an increasingly 
detailed understanding of the application.  However, it should be 
noted again that these performance optimizations are optional and 
for improved performance only.  Unlike conventional manual 
parallelization, TLS programming does not require a thorough 
understanding of the application to ensure correctness. 

3.7 Complex Value Prediction 
In the current example, one of the main variables suffering 

violations is inRes.  Complex value prediction can reduce these 
violations.  Note that the result string is constructed out of fixed 
width columns.  The first column is COLWID characters wide and 
contains the word (lines 10-12).  The next column is five 
characters wide and contains the final count of the number of 
instances of the string, followed by a carriage return (line 13).  
From the code a programmer can determine that the final value of 
inRes will always be COLWID+5+1 characters greater after line 
13 than it was in line 10, but an automated parallelizer would 
have difficulty deciphering this.  Using this prediction of the final 
value of inRes, the programmer is able to hoist the final update 
of inRes above the many function calls in lines 10-13, once 
again reducing both the chance of a violation occurring and the 
execution time discarded if a violation does occur.   

This violation could perhaps be alleviated automatically 
using a combination of profiling, violation tracking and a stride 
predictor.  A more challenging example would be if the count of 
instances were printed to a variable, rather than fixed, length field.  
Complex value prediction could quickly determine the final value 
of inRes based upon the number of digits used to print cnt, but 
this would be difficult to do automatically using a stride predictor. 

Likewise, if the count had been printed to a variable-length 
field, the programmer could have chosen to change the format to a 
fixed length to allow for complex value prediction.  This could 
occur if the output format was not critical and could tolerate a 
change.  If so, this would also show how a small change in the 
algorithm and data structures can allow further optimization on a 
program exhibiting contention due to its having been designed 
without parallel execution in mind.  This change would not 
generally be allowed for an automatic parallelizer. 

3.8 Algorithm Adjustments 
By this point almost all loads and stores to the same variable 

are placed close to each other and close to the top of each 
iteration, and yet the performance has not improved significantly.  
Upon closer examination, we see that many of the violations 
would never occur if each thread did not execute lines 9-16 and if 
it maintained a spacing of one quarter iteration from the threads 

immediately previous to and following it.  The problem is that 
when lines 9-16 are executed, a large number of cycles are 
consumed to store a word and its count to the result string.  Only 
after completing this, the thread updates the top of the heap (line 
22).  This violates all more speculative processors, due to the load 
in line 8, and causes them to discard all their execution during the 
time the result string was being updated.  While conducting an 
early update on the top node of the heap could yield some benefit, 
nodes further down would still likely cause violations.   

The optimization to alleviate this problem is to move as 
much of the execution in lines 9-16 to the position following line 
23.  By minimizing the work conducted before lines 17-23, we 
can reduce or eliminate many of the violations.  In particular, only 
the updates of data locations with loop-carried dependences 
should occur before line 17, i.e. updates to inRes, last and 
cnt.  The strcpy, strlen, memset and sprintf functions 
can be conducted later, after lines 17-23, without causing 
violations.  This is similar to moving load-store pairs closer to the 
start of each iteration, but instead we are making algorithm 
changes to move non-violating work closer to the end of each 
iteration.  Specifically, we are moving these four functions from 
before to after the heap update, which repeatedly dereferences 
dynamically determined pointers.  It may be obvious to the 
programmer that resultString and the heap are never 
intended to have intersecting addresses; hence no violations 
should occur.  However, it appears the compiler would need to 
conduct either an advanced general analysis or an analysis quite 
specific to this situation to assert this non-intersection in all cases.  
Therefore, this is a change in algorithms that may not be possible 
for an automated compiler to conduct.  As Figure 6 shows, this 
optimization greatly improves performance, raising the speedup 
from 2.6 to 3.2 and also halving the number of violations. 

After this optimization, we observe that the dominant 
remaining violations are the loads in line 20 with the store in line 
22.  We observe that this is in part due to the fact that when the 
two child nodes point to equal strings (a common occurrence at 
the top of the heap), the second (right, higher-index) node is 
always selected.  This leads to frequent contention for all nodes 
near the top of the heap and resultant violations, as each thread 
descends down the same path through the heap.   

We can easily change the algorithm so that each speculative 
thread chooses the opposite direction from the thread immediately 
before it.  Consecutive threads will alternate between always 
selecting the left or always selecting the right node in cases of 
equality, thereby descending down the opposite path from the 
immediately previous thread.  Again, a parallelizing compiler 
could not make this change, because it alters the behavior of the 
program, even though in this case the program will still produce 
exactly the same final result string.  This final optimization results 
in slightly improved performance and less frequent violations.   
Note that including all the transformations so far would yield a 
4% slowdown if the code were executed on a uniprocessor.  
Hence, a perfect, linear speedup on this code would correspond to 
a speedup of only 3.85 versus the original sequential program. 

Further attempts at optimization were unsuccessful.  Yet, 
violations do remain, because they occur infrequently enough that 
their losses are less than the overheads of reducing them. For 
example, attempts at synchronizing on the most frequent 



violations, using locks similar to those used in conventional 
parallelization, generated excessive waiting times.  This supports 
the assertion that TLS parallelization often performs better than 
manual parallelization without TLS due to its optimistic execution 
of code that only occasionally causes violations. 

3.9 Additional Automatic Optimizations 
Several additional automatic techniques exist for improving 

TLS parallel performance.  These were not used in the heap sort 
example, but will be discussed briefly here for completeness; 
more details can be found in [3][5][6][8][12][14][15][17].  The 
techniques comprise loop chunking, loop slicing, parallel 
reductions and explicit synchronization.  Loop chunking refers to 
unrolling multiple small loop iterations to form each TLS 
iteration, usually to amortize per-iteration overheads.  Loop 
slicing is the opposite, i.e. splitting each large iteration into 
multiple, more manageable ones, a technique that represents a 
simple and automatically transformable case of speculative 
pipelining described below.  Parallel reduction transformations 
allow certain iterative functions to be parallelized.  For example, 
iterative accumulations into a single summation variable could be 
instead transformed into four parallel summations that are 
combined at the end of the loop.  Explicit synchronization works 
much like locks in conventional parallelization to protect a 
variable and can be used on a frequently violated variable to 
reduce the violation frequency and the associated discarding of 
execution [3][5][12].  Unlike its use in conventional 
parallelization, it is used for performance and not correctness.  If 
the violation data for a TLS parallel application indicates that a 
read is frequently violated by a write from a less speculative 
thread, then these two instructions can be explicitly synchronized.  
By eliminating frequent violations, it trades a large quantity of 
discarded execution time for a smaller quantity of waiting time. 

3.10 Speculative Pipelining 
Finally we will describe one other very important code 

transformation, speculative pipelining.  Until now, we have 
focused on single-level, loop-based speculation, because loops are 
an obvious and easy form of parallelism to extract and because the 
TLS software speculation overheads for single-level loop-only 
speculation are low.  However, TLS can also extract parallelism 
from tasks that are not associated with a single loop.  For 
example, Figure 7A shows how parallelism can exist at multiple 
levels within a set of nested loops, making single-level 
parallelization suboptimal.  Here we assume that each of the 
thousand-cycle routines is a fairly independent task.  If only either 
the outer loop or the inner loop is parallelized using single-level 
parallelization, half the TLP that exists will not be extracted.   

Similarly, TLP can exist between a procedure and the code 
following the procedure call.  In the past this has been exploited 
with procedural speculation [13], but speculative pipelining can 
extract this parallelism with lower overhead.  Finally, fairly 
independent, sequential tasks that are not part of a loop can be 
parallelized.  This is similar to the TLS conducted by Multiscalar 
[12][21], but because the programmer explicitly selects the 
parallel tasks and the TLS hardware support is less closely 
coupled to the processor cores, speculative pipelining focuses on 
longer threads.  In some cases, speculative pipelining can be 
automatically applied (loop slicing, procedural speculation), but 
in other cases the technique must be conducted manually 

In speculative pipelining we break the dynamic execution 
path of a uniprocessor program between fairly independent tasks 
and make each task an iteration of a newly constructed loop.  To 
do this, we create a loop shell that chooses between the tasks each 
iteration by using a switch-case statement directed by a 
dynamically updated thread-choice variable.  Figure 7B 
demonstrates how multi-level speculation can be implemented.  
The outer loop body is represented by case 0 and the inner loop 
body by case 1.  The selection between them is made by the 
threadChoice variable, which is updated each time program 
flow switches between executing iterations of the outer loop and 
the inner loop.  New shared variables allow each thread to update 
early the next thread's value of x, y and threadChoice while 
maintaining a private copy of the variables to be used for 
conducting the thread's remaining execution.   

The overhead of speculative pipelining is very small; this 
example has less than 12 extra dynamic instructions per thread, or 
roughly 1% overhead.  But, speculative pipelining allows great 
flexibility in constructing threads.  Unlike regular loop-based 
speculation, it can create threads that start and end in different 

for (x=0; x<1000; x++) { 
if ((x%10) == 0) 

for (y=0; y<10; y++) 
InnerLoopOneThousandCyclesOfWork(); 

OuterLoopOneThousandCyclesOfWork(); 
} 

Figure 7A. Original code with independent tasks 
 

shared_threadChoice = shared_y = 0; 
for (shared_x=0; shared_x<1000;) { 
 threadChoice = shared_threadChoice; 
 x = shared_x; 
 if ((x%10) == 0) { 
  y = shared_y++; 
  if (y == 0) { 
   threadChoice=shared_threadChoice=1; 
  } else if (y >= 10) { 
   threadChoice=shared_threadChoice=0; 
   shared_x++; 
   shared_y = 0; 
  } 
 } else 
  shared_x++; 
 

 switch (threadChoice) { 
  case 0: 
   OuterLoopOneThousandCyclesOfWork(); 
   break; 
  case 1: 
   InnerLoopOneThousandCyclesOfWork(); 
   break; 
 } 
} 

Figure 7B. Speculative pipeline ready for loop-only TLS 

Table 3. Benchmark characteristics 

Benchmark Application category Lines of 
code 

177.mesa 3-D graphics library 61,343 
179.art Image recognition/neural networks 1,270 

183.equake Seismic wave  
propagation simulation 1,513 

CFP 
2000 

188.ammp Computational chemistry 14,657 

175.vpr FPGA circuit  
placement and routing 17,729 

181.mcf Combinatorial optimization 2,412 
CINT 
2000 

300.twolf Place and route simulator 20,459 
 



functions or that are from portions of the program that do not 
iterate at all.  As a result, speculative pipelining is one of the most 
powerful and difficult techniques for enhancing TLS performance. 

4. SPEC CPU2000 BENCHMARKS 
4.1 Benchmark Selection and Simulation 

The SPEC2000 benchmark suite was chosen for this study, 
as it contains a selection of applications that are representative of 
CPU-intensive workloads executed on high-performance 
processors and memory systems.  All four floating point 
applications coded in C were selected, as they were expected to be 
more challenging to parallelize than the Fortran benchmarks.  
Three integer benchmarks were selected on the basis of source 
code size and indications of amenability to manual parallelization, 
such as a concentration of execution time within a small number 
of functions.  While a few of the other integer benchmarks look 
amenable to manual parallelization, it is clear that several would 
be very difficult or impossible to manually parallelize without an 
extensive understanding of the algorithms and data structures in 
use.  Information on the selected benchmarks is given in Table 3. 

We utilized the reference input data sets.  Due to the long 
execution times of these data sets, complete execution was not 
possible for any of the benchmarks.  Since previous research on 
SPEC benchmarks [16] has demonstrated both the difficulty and 
the importance of choosing carefully the portion of execution to 
simulate for applications that exhibit large-time-scale cyclic 
behavior, we followed the recommendation to simulate one or 
more whole application cycles.  The total of all simulation 
samples was at least 100 million instructions from each original 
(non-parallelized) application.  One should note that all speedup 
and coverage results presented below are based upon an 
extrapolation of these samples of whole application cycles back to 
the entire application.  The extrapolation was conducted by first 
profiling the full application using similar real hardware and the 
same compiler as the Hydra CMP.  Full application speedup was 
then calculated assuming the simulated speedup on the portion of 
execution time corresponding to the application cycles, and 
assuming no speedup on the portion of the original execution time 
that was not a part of the application cycles we sampled. 

4.2 Results of Parallelization 
In this section we will present results from simulations of our 

benchmarks once the transformations discussed above were 

performed.  We will discuss the performance and the programmer 
effort required for parallelization.  We will also characterize the 
threads and the reasons for performance losses in the TLS system.   

Each application was initially parallelized using base 
parallelization of loops and automatic load-store placement.  
Table 4 lists the additional transformations that were then used.  
The first three are simple and can be automated; the second three 
are complex, requiring manual programming. 

The data demonstrate that the simple transformations are 
beneficial for both floating point and integer applications.  
However, the complex ones are beneficial mainly for the integer 
applications.  This was because the execution times of the floating 
point applications were all dominated by easily parallelizable 
loops, except for ammp.  Therefore, the complex transformations 
added little or no benefit.  In contrast, all the integer applications 
benefited from the code transformations, and two of the three 
benefited from complex ones.  Notably, explicit synchronization 
was not very valuable, enhancing performance for just two 
applications and both times only when used in combination with 
some other technique.  This is for two reasons.  First, it does not 
work well for infrequent violations, as discussed in Section 3.9.  
Second, many of the violations typically prevented by explicit 
synchronization are instead better eliminated through the use of 
complex methods that do not cause serialization. 

Table 4. Code transformations 

SPEC CFP2000 SPEC CINT2000 
Transformation 177 

mesa 
179 
art 

183 
equake 

188 
ammp 

175 
vpr 

181 
mcf 

300 
twolf 

Loop 
chunking/slicing  X X X  X  

Parallel 
reductions  X   X X X 

Explicit 
synchronization     X  X 

Speculative 
pipelining    X X  X 

Adapt algorithms 
or data structures     X  X 

Complex value 
prediction     X  X 

 

Table 5. Speedup from each additional transformation 

Application 
Last  

transformation  
applied 

Cumu-
lative 

speedup 

Incre-
mental 

speedup 

177. 
mesa Basic 115%  

Basic 48%  
Parallel reductions 104% 38% 

179. 
art 

Loop chunking/slicing 135% 15% 

Basic 134%  183. 
equake Loop chunking/slicing 143% 4% 

Basic 35%  

Speculative pipelining 52% 13% 

CFP 
2000 

188. 
ammp 

Loop chunking/slicing 60% 5% 

Basic 7%  
Complex value 
prediction 55% 44% 

175. 
vpr  
(place) Parallel reductions, 

explicit synchronization 111% 36% 

Basic 0%  
Speculative pipelining 16% 16% 
Algorithm/data structure 
changes 48% 28% 

175. 
vpr  
(route) 

Complex value 
prediction 63% 10% 

Basic 38%  
Loop chunking/slicing 45% 5% 

181. 
mcf 

Parallel reductions 47% 1% 

Basic 0%  
Speculative pipelining 18% 18% 
Parallel reductions, 
explicit synchronization, 
algorithm/data structure 
changes 

39% 18% 

CINT 
2000 

300. 
twolf 

Complex value 
prediction 77% 27% 

 



Table 5 details the speedups achieved for each application as 
the transformations were sequentially added.  Ideally, the 
incremental speedup due to each transformation could be listed.  
However, the transformations interact with each other.  For 
example, on vpr (place) explicit synchronization yielded no 
speedup after base parallelization with additional value prediction.  
However, applying it together with the parallel reduction 
transformation provided a sizeable advantage.  Due to the 
interactions and the many permutations of transformations, we 
have instead listed the speedups along the single path of 
transformations we actually followed.  Note that because vpr is a 
place and route application and the two portions of the application 
are very different, we have listed results for them separately.   

Table 5 more clearly highlights that simple transformations 
parallelize floating point applications well, but that integer 
applications require complex transformations.  In fact, most if not 
all of the speedup for each floating point application is already 
realized using only basic parallelization, while the opposite holds 
true for the integer applications, which often require complex 
transformations to get any significant speedup at all. 

Figure 8 shows the speedups that were achieved using three 
TLS/memory systems.  The first is a realistic system, the second 
assumes a perfect memory system and the third assumes a perfect 
memory system with a zero-overhead TLS implementation.  The 

average (arithmetic mean) floating point speedup with the real 
memory system is 2.1, and the average integer speedup is 1.7.  
Comparison of these speedups with those generated by previous 
studies on automatic parallelization with TLS is difficult, due to 
the different architectures, compilers and execution segments 
utilized.  Since TLP is mostly orthogonal to ILP, a rough 
comparison of speedups can be done using systems with different 
processor cores and compilers, but different memory systems will 
still affect the results.  With these caveats, a comparison with 
results from [17][18][21] indicates that the manual parallelization 
has provided very good parallel performance, well in excess of 
automatic extraction of TLP at similar thread granularities. 

The results for the realistic and perfect memory systems in 
Figure 8 indicate a sensitivity to memory system delay that varies, 
with some application speedups fairly insensitive to the 
characteristics of the memory system and others more strongly 
affected.  The perfect memory system results usually provide an 
upper bound on the performance that can be achieved by scaling 
the memory system with the number of processors.  An unusual 
exception occurs for ammp, because the faster memory system 
causes a large number of violations on a load-store pair that 
would otherwise have experienced far fewer violations.  Likewise, 
the results for the perfect memory systems with and without 
speculation overheads indicate the performance losses caused by 
the use of a TLS system with speculation software handlers.  
These results indicate that fully hardware-based speculation 
would improve performance fairly little for these applications. 

Table 6 characterizes the speculative threads created within 
each application.  Thread sizes span almost two orders of 
magnitude.  The number of distinct speculative regions is small, 
demonstrating that for many representative applications a large 
portion of the total execution time can be parallelized by selecting 
only a few locations in the code.  The parallel coverage of the 
original sequential execution time is uniformly high, even for the 
integer applications.  Parallel coverage typically increases as more 
sophisticated transformations are applied to the applications.  
Similarly, thread lengths can also increase safely as violations are 
reduced.  Because longer threads expose more work to losses from 
violations, as violations become less frequent, thread lengths can 
be safely increased, for example, by loop chunking.  This reduces 
speculation overheads and the serialization enforced by the in-
order commit at the end of each thread.  Correspondingly, 
applications for which the TLS thread lengths are large and the 
parallel coverage high tend to have good speedups.  But, if either 
quality is absent, then the performance will usually be 
substantially diminished.  Amdahl’s Law explains why coverage 

Table 6. Speculative thread lengths, regions and coverage 

Application 
Dynamic 

thread length 
(instructions) 

Number of 
speculative 

regions 

Percent 
execution 

time 
coverage 

177.mesa 7,735 1 84% 
179.art 453 7 95% 
183.equake 1,055 6 100% 

CFP 
2000 

188.ammp 140 1 86% 

175.vpr 
(place) 5,061 1 100% 

175.vpr 
(route) 1,309 1 97% 

181.mcf 238 5 91% 

CINT 
2000 

300.twolf 784 1 100% 
Column mean 2,097 3 94% 

 

Table 7. Breakdown of parallelized execution times 

Application Useful Discarded Waiting Overhead 
177.mesa 70% 28% 2% 0% 
179.art 98% 0% 1% 1% 
183.equake 78% 16% 5% 1% 

CFP 
2000 

188.ammp 50% 40% 6% 4% 

175.vpr 
(place) 63% 36% 0% 1% 

175.vpr 
(route) 47% 35% 10% 8% 

181.mcf 65% 24% 6% 5% 

CINT
2000 

300.twolf 55% 23% 20% 2% 
Column mean 66% 25% 6% 3% 
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must be high, while the poorer performance for small thread 
lengths can be explained by their correlation with high violation 
rates and greater speculation overheads and commit serialization. 

Table 7 provides the breakdown of execution times spent in 
the parallelized sections of code.  The useful work done is 
generally quite high, the TLS system overhead is negligible, and 
violations (discarded time) waste over four times as many cycles 
as load imbalances (waiting time).  The remaining violations 
tended to be due to variables that had frequent accesses 
distributed amongst the threads, where each access unpredictably 
caused a violation a small percentage of the times it dynamically 
occurred.  This prevented any benefits from explicit 
synchronization, because it causes too much execution 
serialization.  Likewise, these qualities would prevent the dynamic 
dependence detector described in [3] from providing any benefit, 
although the one proposed in [12] could work, but only if the 
dependence distances defined in their paper could be used to 
develop a reliable dependence predictor for these specific 
dependences.  Dynamic load imbalance, due to size-mismatched 
threads that must wait to be committed in order, is the source of 
the waiting losses.  Both vpr (route) and twolf show large 
losses due to load imbalances.  This is especially a problem for 
applications that have been parallelized with small thread sizes.   

Part of the useful work done includes the execution of the 
additional instructions required for the parallel transformations 
and to support the interprocessor communication and control.  In 
general, the programmer must make a choice between the cost of 
supporting each additional transformation and the cost of the 
violations that occur from not using it, instead. These extra 
instructions limit the maximum speedup, even though for these 
benchmarks the losses due to the extra work were fairly small.   

Table 8 provides an indication of the programmer effort 
required for the parallelization of these benchmarks.  It lists the 
number of lines of code added and the total number of hours spent 
analyzing, parallelizing and debugging each application.  While 
the hours required are highly dependent on the capabilities of the 
programmer, these data provide at least an order-of-magnitude 
gauge of programmer effort involved, and no better metric is 
apparent.  We only counted lines of code that were new and 
unique, or at least substantially changed.  We did not count lines 
of code that were changed or added to implement the automatic 
base parallelization, i.e. we did not count lines of code that were 
effectively replicated from the original application or lines of 
template code that were inserted purely to support the simulator.   

The number of lines of code added remains fairly small and 
constant across applications, almost always less than two hundred.  

For these applications, the number of lines required has little 
correlation with the size of the application.  However, this may 
not hold true for larger, more complex applications, which may 
require the parallelization of more speculative regions, i.e. loops.  
The number of hours required to parallelize each application was 
also quite small, in comparison to the number of hours that were 
originally required to develop them.  This strongly supports our 
claim that manual parallelization with TLS allows programmers to 
code for a uniprocessor target in a straightforward way, and then 
with minimal effort port the entire optimized application to a TLS 
CMP platform to realize good parallel performance. 

TLS parallelization depends primarily on an application's 
algorithms and source code and the TLS and memory systems, 
rather than the processor architecture.  Therefore, the final 
parallelized application should port easily to other CMP systems 
that support loop-based TLS and explicit synchronization.  For 
equivalent speedups, they should have low interprocessor 
communication delays, low speculation overheads and similarly 
sized caches and write buffers.  A CMP with fewer processors will 
generally not require significant code changes in order to run 
efficiently, but more processors may necessitate modifications to 
use all the processors.  This will be examined in future research. 

5. RELATED WORK 
Research on automatic parallelization [2][9] and speculation 

[4][13][14][17][21]  is underway at various universities.  Several 
projects share our focus on general purpose applications.  
However, they primarily investigate parallelization that can be 
automated, while in this paper we use techniques that cannot be 
easily automated to explore the full potential of TLS.  The 
Wisconsin Multiscalar team achieves excellent speedups on 
general purpose applications, including integer applications 
[12][21].  However, Multiscalar allows register-to-register 
communication between the processors at the cost of more 
complex and high-speed hardware.  So, their research explores a 
different hardware/software design space, generally utilizing finer-
granularity threads.  Research by the CMU STAMPede team 
[17][18][19] and at the University of Illinois at Urbana-
Champaign [4][5][20] explores different design points with less 
closely coupled processors, more similar to our TLS CMP.   

Relevant research done by Rauchwerger, Padua and Amato 
considered software-based schemes of speculation and 
parallelization [15], while later work in conjunction with Zhang 
and Torrellas utilized hardware support, as well [20].  Other 
studies [4][18] have focused on achieving highly scalable 
parallelization.  These studies differ from ours in that they either 
focus on using software only, or on using hardware support 
specific to the code transformation applied, i.e. hardware for 
conducting reductions or for achieving scalable speedups.  Also, 
much of their research has centered on scientific, floating-point-
intensive Fortran applications, while our research considers both 
floating point and integer programs that are all written in C. 

Finally, substantial work on exploiting value prediction and 
dynamic synchronization has been conducted in 
[3][5][6][8][12][17].  We incorporate the benefits of these studies 
where possible and extend upon them.  For example, the earlier 
value prediction studies explore only predictions of values that do 
not change or are in a simple stride.  In this study, we explore 
predictions of values that evolve in a more complex manner. 

Table 8. Lines of code added to parallelize applications 

Application Original 
lines 

Lines 
added 

Percent 
added 

Prog. hours 
required 

177.mesa 61,343 20 0% 33 
179.art 1,270 140 11% 24 
183.equake 1,513 130 9% 18 

CFP 
2000 

188.ammp 14,657 130 1% 107 

175.vpr 17,729 160 1% 102 
181.mcf 2,412 120 5% 165 

CINT
2000 

300.twolf 20,459 320 2% 112 
Column mean  146 4% 80 

 



6. CONCLUSION 
In this paper, we described the way in which TLS manual 

programming is done and three of the most useful manual TLS 
code transformations:  complex value prediction, data structure 
/algorithm changes and speculative pipelining.  These techniques 
were applied to several applications in SPEC CPU2000 to assess 
the performance and difficulty of using TLS on well-known 
processor benchmarks.  While simple (automatic) transformations 
were useful for many applications, complex transformations were 
able to provide further large performance benefits.  This was 
especially true for integer applications, some of which would have 
experienced no significant speedup with only automatic 
parallelization.  We also show that real-world applications can be 
parallelized with very little effort with manual TLS programming.  

Our experience shows that TLS can dramatically reduce the 
programmer effort required for application parallelization, while 
yielding performance gains similar to, if not exceeding, those 
obtainable using conventional manual parallelization.  This 
enables a new approach to parallel programming.  In this 
paradigm, the majority of the programming effort can focus on 
conventional single-threaded application design, with a relatively 
small effort at the end to port the application to a multiprocessor 
platform using manual parallelization with TLS.   
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